
数据是关系数据库系统中存储的统一化格式。 因此,实施我们需要非常先进和复杂的SQL查询统计计算。但是R能够轻松地连接到诸如MySql, Oracle, Sql server等多种关系数据库并且可以从它们的记录转为R中的数据帧。一旦数据是在R环境中可用,就变成了正常R数据集,并可以被操纵或使用所有强大包和函数来进行分析。
在本教程中,我们将使用 MySQL 作为参考数据库,用于连接到 R 中。
RMySQL 软件包
R有一个名为“RMySQL”它提供了与 MySQL 数据库之间的本地连接的内置软件包。可以使用下面的命令来安装这个包到 R 的环境。
install.packages("RMySQL")
连接R到MySql
一旦软件包安装,我们创建 R 的连接对象连接到数据库。这需要用户名,密码,数据库名和主机名作为输入。
# Create a connection Object to MySQL database.
# We will connect to the sampel database named "sakila" that comes with MySql installation.
mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila', host='localhost')
# List the tables available in this database.
dbListTables(mysqlconnection)
当我们上面的代码执行时,它产生以下结果:
[1] "actor" "actor_info"
[3] "address" "category"
[5] "city" "country"
[7] "customer" "customer_list"
[9] "film" "film_actor"
[11] "film_category" "film_list"
[13] "film_text" "inventory"
[15] "language" "nicer_but_slower_film_list"
[17] "payment" "rental"
[19] "sales_by_film_category" "sales_by_store"
[21] "staff" "staff_list"
[23] "store"
查询表
我们可以使用函数 dbSendQuery()查询在MySQL数据库表。查询获取执行在MySQL中并使用fetch()函数返回结果集。最后,它被存储为R的数据帧。
# Query the "actor" tables to get all the rows.
result = dbSendQuery(mysqlconnection, "select * from actor")
# Store the result in a R data frame object. n=5 is used to fetch first 5 rows.
data.frame = fetch(result, n=5)
print(data.fame)
当我们上面的代码执行时,它产生以下结果:
actor_id first_name last_name last_update
1 1 PENELOPE GUINESS 2006-02-15 04:34:33
2 2 NICK WAHLBERG 2006-02-15 04:34:33
3 3 ED CHASE 2006-02-15 04:34:33
4 4 JENNIFER DAVIS 2006-02-15 04:34:33
5 5 JOHNNY LOLLOBRIGIDA 2006-02-15 04:34:33
查询与筛选子句
我们可以通过任何有效的 select 查询得到结果。
result = dbSendQuery(mysqlconnection, "select * from actor where last_name='TORN'")
# Fetch all the records(with n = -1) and store it as a data frame.
data.frame = fetch(result, n=-1)
print(data)
当我们上面的代码执行时,它产生以下结果:
actor_id first_name last_name last_update
1 18 DAN TORN 2006-02-15 04:34:33
2 94 KENNETH TORN 2006-02-15 04:34:33
3 102 WALTER TORN 2006-02-15 04:34:33
更新表的行
我们可以通过传递更新查询到dbSendQuery()函数更新一个MySQL表中的行。
dbSendQuery(mysqlconnection, "update mtcars set disp = 168.5 where hp = 110")
在执行上面的代码后,我们可以看到该表在MySQL环境中已经更新。
将数据插入到表
dbSendQuery(mysqlconnection,
"insert into mtcars(row_names, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb)
values('New Mazda RX4 Wag', 21, 6, 168.5, 110, 3.9, 2.875, 17.02, 0, 1, 4, 4)"
)
执行上面的代码后,我们可以看到插入到表在MySQL环境的记录行。
在MySQL中创建表
我们可以使用函数dbWriteTable()创建一个表在MySQL中。它覆盖表,如果它已经存在,并且需要一个数据帧输入。
# Create the connection object to the database where we want to create the table.
mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila', host='localhost')
# Use the R data frame "mtcars" to create the table in MySql.
# All the rows of mtcars are taken inot MySql.
dbWriteTable(mysqlconnection, "mtcars", mtcars[, ], overwrite = TRUE)
在执行上面的代码后,我们可以看到在MySQL环境中有创建后的表。
在MySQL删除表。
我们可以把 MySql 数据库这个表删除,通过 DROP TABLE 语句发送到 dbSendQuery(),与之前从表查询数据的方式相同。
dbSendQuery(mysqlconnection, 'drop table if exists mtcars')
在执行上面的代码后,我们可以看到该表在MySQL环境被丢弃。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01