京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据是关系数据库系统中存储的统一化格式。 因此,实施我们需要非常先进和复杂的SQL查询统计计算。但是R能够轻松地连接到诸如MySql, Oracle, Sql server等多种关系数据库并且可以从它们的记录转为R中的数据帧。一旦数据是在R环境中可用,就变成了正常R数据集,并可以被操纵或使用所有强大包和函数来进行分析。
在本教程中,我们将使用 MySQL 作为参考数据库,用于连接到 R 中。
RMySQL 软件包
R有一个名为“RMySQL”它提供了与 MySQL 数据库之间的本地连接的内置软件包。可以使用下面的命令来安装这个包到 R 的环境。
install.packages("RMySQL")
连接R到MySql
一旦软件包安装,我们创建 R 的连接对象连接到数据库。这需要用户名,密码,数据库名和主机名作为输入。
# Create a connection Object to MySQL database.
# We will connect to the sampel database named "sakila" that comes with MySql installation.
mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila', host='localhost')
# List the tables available in this database.
dbListTables(mysqlconnection)
当我们上面的代码执行时,它产生以下结果:
[1] "actor" "actor_info"
[3] "address" "category"
[5] "city" "country"
[7] "customer" "customer_list"
[9] "film" "film_actor"
[11] "film_category" "film_list"
[13] "film_text" "inventory"
[15] "language" "nicer_but_slower_film_list"
[17] "payment" "rental"
[19] "sales_by_film_category" "sales_by_store"
[21] "staff" "staff_list"
[23] "store"
查询表
我们可以使用函数 dbSendQuery()查询在MySQL数据库表。查询获取执行在MySQL中并使用fetch()函数返回结果集。最后,它被存储为R的数据帧。
# Query the "actor" tables to get all the rows.
result = dbSendQuery(mysqlconnection, "select * from actor")
# Store the result in a R data frame object. n=5 is used to fetch first 5 rows.
data.frame = fetch(result, n=5)
print(data.fame)
当我们上面的代码执行时,它产生以下结果:
actor_id first_name last_name last_update
1 1 PENELOPE GUINESS 2006-02-15 04:34:33
2 2 NICK WAHLBERG 2006-02-15 04:34:33
3 3 ED CHASE 2006-02-15 04:34:33
4 4 JENNIFER DAVIS 2006-02-15 04:34:33
5 5 JOHNNY LOLLOBRIGIDA 2006-02-15 04:34:33
查询与筛选子句
我们可以通过任何有效的 select 查询得到结果。
result = dbSendQuery(mysqlconnection, "select * from actor where last_name='TORN'")
# Fetch all the records(with n = -1) and store it as a data frame.
data.frame = fetch(result, n=-1)
print(data)
当我们上面的代码执行时,它产生以下结果:
actor_id first_name last_name last_update
1 18 DAN TORN 2006-02-15 04:34:33
2 94 KENNETH TORN 2006-02-15 04:34:33
3 102 WALTER TORN 2006-02-15 04:34:33
更新表的行
我们可以通过传递更新查询到dbSendQuery()函数更新一个MySQL表中的行。
dbSendQuery(mysqlconnection, "update mtcars set disp = 168.5 where hp = 110")
在执行上面的代码后,我们可以看到该表在MySQL环境中已经更新。
将数据插入到表
dbSendQuery(mysqlconnection,
"insert into mtcars(row_names, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb)
values('New Mazda RX4 Wag', 21, 6, 168.5, 110, 3.9, 2.875, 17.02, 0, 1, 4, 4)"
)
执行上面的代码后,我们可以看到插入到表在MySQL环境的记录行。
在MySQL中创建表
我们可以使用函数dbWriteTable()创建一个表在MySQL中。它覆盖表,如果它已经存在,并且需要一个数据帧输入。
# Create the connection object to the database where we want to create the table.
mysqlconnection = dbConnect(MySQL(), user='root', password='', dbname='sakila', host='localhost')
# Use the R data frame "mtcars" to create the table in MySql.
# All the rows of mtcars are taken inot MySql.
dbWriteTable(mysqlconnection, "mtcars", mtcars[, ], overwrite = TRUE)
在执行上面的代码后,我们可以看到在MySQL环境中有创建后的表。
在MySQL删除表。
我们可以把 MySql 数据库这个表删除,通过 DROP TABLE 语句发送到 dbSendQuery(),与之前从表查询数据的方式相同。
dbSendQuery(mysqlconnection, 'drop table if exists mtcars')
在执行上面的代码后,我们可以看到该表在MySQL环境被丢弃。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16