
大数据时代,你的营销决策够智能吗
数据权力的分配直接影响到决策权力的划分,高层需要带头建立大数据决策的文化。目前的人工智能技术更多是从大数据中发现线索,而对数据分析的结果进行解读,还需要依靠决策者的洞察力。相比于随处可得的技术,提升决策者对大数据的洞察力、调整公司决策的方式更为关键。市场营销是受到大数据影响最明显的领域,大数据是如何影响营销决策的?
大数据具有三个区别于传统数据的特点:海量、多维度和实时。海量是指所涉及的数据量规模巨大。从营销的角度讲,可以理解为覆盖人群众多。多维度表示数据具有多种不同用户信息,比如网络搜索、浏览、购买交易等信息。多维度的数据能将用户画像勾勒得更清楚,让互联网营销更有的放矢。实时则意味着大数据产生和更新的速度之快,其高时效性对数据的分析和处理速度都有很高的要求。
大数据本身是没有目的的,决策者必须有一个数据的应用目的,才知道如何去挖掘数据价值。大数据对于公司营销决策的作用有三个:一是为用户洞察提供了有力武器;二是满足个性化营销的要求;三是帮助企业做出正确的媒介购买等营销执行决策。
大数据为市场洞察提供更多维度
市场洞察原来是通过传统数据获取,现在已经渐渐过渡到利用大数据来实现。通过企业调研和营销获得的数据具有明显的“人工计划”特征,在收集数据之前,数据的样本、调查手段、分析手段和应用目的就有了清晰的规划,所以数据是“结构化”的。
移动互联网产生的数据是大数据,这些数据主要是用户行为产生的数据,包括搜索、浏览、交易和社交等。它不受计划控制,而且数据的收集、分析和应用的过程有很强的不确定性。管理者发现,大数据的维度更多,能够从360度全方位接近用户,分析出谁在买、何时买、买多少、为什么买等等,让决策的依据更清晰。
大数据还有一个特点是实时。从数据的产生到应用是在很短的时间内完成的,“很短”可以是24小时,也可以是仅仅几毫秒,这中间包含数据收集、数据过滤、数据进入数据库、数据判定、数据应用等一系列过程。这种速度要求是人工无法做到的。虽然数据的收集是某个结果的“事后”,对于数据的处理和应用却必须是“事前”决定的,所以整个过程受到决策者的影响,也需要依靠智能工具来完成。
笔者创建过一家广告技术公司,为了帮助银行客户寻找对小额贷款产品感兴趣的潜在客户,我们针对搜索过“贷款”“抵押”等关键词的互联网用户投放产品广告。数据表明,关键词的时效性非常明显:时间越短,效果越好。如果超过24小时,关键词的作用基本就消失了。有了这个经验以后,我们在智能系统中设定,只对24小时以内的关键词搜索用户投放金融产品广告,从而提升了转化率。如今,时效性已经成为智能广告引擎不可缺少的定向数据元素。
大数据让营销从曝光导向转为效果导向
传统营销的对象是“群”。营销人员是按照用户年龄、性别、收入、教育、职业、家庭、地域因素等用户的外部或心理特征来描述广告受众的。这种“人以群分”的用户“标签”一旦固定下来就不会改变。由于覆盖的人群数量较大,所以被称作是大众营销。衡量大众营销的效果往往是曝光,就是营销活动覆盖了多少人。我们熟知的GRP(总收视率)、CPM(千人曝光成本)等,就成为衡量营销决策的主要指标。决策者使用的工具来自传统的统计数据,就是前面提到的结构数据。
有了大数据,特别是有了移动数据以后, 用户分类中不但增加了前面提到的时间因素,还补充了地点因素,场景分类的概念就随之诞生。营销决策变成了运用数据推算出用户的场景信息,从而决定推送什么营销信息。用户场景分类“标签”的有效性稍纵即逝,现在还是广告受众的“他”,下一秒钟可能就不是了。例如用户在下午1点钟位于某商场,可以推送商场活动相关信息;2点钟回到办公室,你还在推同样的信息就迟了。
“不知道广告的哪一半被浪费”,这个让营销者头痛了百年的问题,似乎从大数据中可以找到解决方案。从此,大众营销模式被颠覆,营销的重心从追求“用户覆盖”转向“有效覆盖”,即效果。由大数据公司谷歌建立的CPC(单位点击成本)的效果营销,成为当今主流的营销模式。这种模式中,决策的依据不再是“群”,而是“个人”。营销活动只有触及目标用户,才算有效。当前的营销行业中CPL (单位销售线索成本)、CPA (单位注册成本)、CPS(每单销售成本)等模式成为衡量营销的标准,占据了广告的大部分预算。在这种环境下,营销决策只有抛弃过往的统计报告,学会从大数据中洞察市场,同时借用大数据驱动的智能引擎去执行策略,才能取得好的营销效果。
智能决策不能离开营销逻辑
企业运用数据做市场分析,是基于决策人对于营销逻辑的理解来完成的。离开了营销逻辑,大数据应用就会迷失方向。
广告媒介的决策是营销的重要部分,因为其影响周期长,而且预算大。传统的媒介购买决策和购买主要是由“人工”完成。营销人员根据推广目的,按照媒体属性,例如媒体内容、年龄属性、收入水平、地理位置、职业特征等等人工选定媒体,制定媒体购买计划,购买决定一旦形成就难以调整。而如今,大数据让购买决策变成以“人工+智能”相结合的方式完成。营销者需要知道哪些营销任务需要由“人工”来决定,哪些需要由“智能”机制来完成。一般来讲,营销的目的、目标用户的定义、活动的时间段和效果衡量等整体策略的制定仍然离不开人;“数据智能”则可以帮助决策者建立用户洞察和媒介洞察,也可以实现媒介的“智能”购买 。
营销决策权是关键瓶颈
曾经遇到过一个快消行业的财富500强客户,希望运用大数据和智能引擎手段提升营销效率。经过深度交流,我们发现客户管理层对大数据还缺乏了解,而且在决策流程上营销部门、数据部门和IT部门相互分离。不难预料,客户最后采用的方案并非大数据营销。公司在运用大数据来帮助洞察和决策的过程中,会面对重重障碍,主要来自公司管理层的不积极和现有组织结构的缺陷。
营销决策负责人需要决策的灵活性,以满足用户需求,但是产品部门的决策往往需要涉及更多人,因此容易造成决策的延迟。不同部门之间的这种矛盾有时甚至会发展为冲突。这种情况下,公司需要平衡营销决策权和产品决策权的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18