
SPSS详细操作:生存资料的Cox回归分析
一、问题与数据
某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年。研究以死亡为结局,两种治疗方式为主要研究因素,同时考虑调整年龄和性别的影响,比较两种疗法对肺癌患者生存的影响是否有差异。变量的赋值和部分原始数据见表1和表2。
表1. 肺癌患者生存的影响因素与赋值
表2. 两组患者的生存情况
二、对数据结构的分析
该研究以死亡为结局,治疗方式为主要研究因素,每个研究对象都有生存时间(随访开始到死亡、失访或随访结束的时间),同时考虑调整年龄和性别的影响。欲了解两种疗法对肺癌患者生存的影响是否有差异,可以用Cox比例风险模型(Cox proportional-hazards model,也称为Cox回归)进行分析。
实际上,Cox回归的结局不一定是死亡,也可以是发病、妊娠、再入院等。其共同特点是,不仅考察结局是否发生,还考察结局发生的时间。
在进行Cox回归分析前,如果样本不多而变量较多,建议先通过单变量分析(KM法绘制生存曲线、Logrank检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
单因素分析后,应当考虑应该将哪些自变量纳入Cox回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,没有发现差异有统计学意义,但是临床上认为与因变量关系密切的自变量。
三、SPSS分析方法
1. 数据录入SPSS
2. Analyze→Survival→Cox Regression
3. 选项设置
1)主对话框设置:
①将生存时间变量送入Time框中→②将结局变量送入Status框中→③点击Define Event→④定义表示终点事件发生的数值(此例中为死亡,用1表示)→⑤Continue→⑥将分组因素和需要调整的变量送入Covariates框中→⑦Method选择Forward:LR。
对于自变量筛选的方法(Method对话框),SPSS提供了7种选择,使用各种方法的结果略有不同,读者可相互印证。各种方法之间的差别在于变量筛选方法不同,其中Forward: LR法(基于最大似然估计的向前逐步回归法)的结果相对可靠,但最终模型的选择还需要获得专业理论的支持。
2)Categorical Covariates选项设置:
①将分类变量group选入右侧Categorical Covariates里,②并选择Reference Category以First为参比(即选择最小数值为参照组),其他按默认选项→③Change→Continue
注意:在数据录入时,建议将二分类变量赋值为0和1;多分类变量赋值为0、1、2、3或者1、2、3、4等,并根据以下情况设置Categorical Covariates选项:
A. 以下情况,可以不定义Categorical Covariates选项:当自变量是二分类变量,并且赋值的差值为1,例如赋值为0和1,也不需要绘制该变量不同组间的生存曲线时。
B. A以外的情况都必须定义Categorical Covariates选项。需特别注意两种情况:①当自变量是二分类变量,但要在Plots选项中设置,得到不同组间的生存曲线时。比如本例中,group为二分类变量,但要观察不同用药组间的生存曲线,就需要在Categorical Covariates选项中定义group变量;②多分类变量时。
3)Plots选项设置:
要绘制生存曲线,①可选择Plots Type中的Survival作为输出的图形,②将主要分类变量选入右侧Separate lines for中,可以输出该变量不同组间对应的生存曲线,其他按默认选项→Continue
4)Options选项设置:
①选择Model Statics中的CI for exp(B)要求输出HR值的95%置信区间,②选择Display model imformation中的At last step(即要求仅输出最后一步的模型),其他按默认选项→Continue→OK
四、结果解读
1. Case Processing Summary表格给出了分析数据的基本情况,其中包括事件发生数(Event)、删失数(Censored)和总数(Total)等信息。
2.Categorical Variable Codings表格给出了Categorical Covariates选项中设置的变量(本例中为group)所对应的赋值情况和频率(Frequency)。最后一列给出了变量编码的情况。脚注b. Indicator Parameter Coding说明了本研究中group变量以First为参照组(Categorical Covariates选项中的设置)。
3.Omnibus Tests of Model Coefficients表格给出了模型中所有变量的回归系数全为0的检验结果。对于本例,①Score统计量为5.065,P=0.024;②对数似然比检验χ2=5.399,P=0.020。说明模型中至少有一个自变量的HR值不为1,模型整体检验有统计学意义。
4.Variables in the Equation表格给出了参数估计的结果。结果显示最后筛选后的模型仅包含group变量,①P=Sig.=0.029说明治疗方式为影响肺癌患者预后的独立因素。②相对危险度HR=Exp(B)=0.410,说明使用新药的患者死亡风险为使用常规药物患者的0.410倍,③HR的95%可信区间(95% CI)为0.184-0.914。
5.生存曲线。前述Plots选项的设置要求输出按照不同药物分组的生存曲线。新药组(赋值为1,绿色线条)比常规药物组(赋值为0,蓝色线条)的生存率高。值得注意的是,该图片并未编辑,不符合给杂志投稿的要求。关于图片的编辑此处不再展开讨论。
五、撰写结论
治疗方式为影响肺癌的独立因素(P=0.029)。与常规药物相比,使用新药的肺癌患者的死亡风险低于使用常规药物的患者,HR=0.410(95% CI: 0.184-0.914)。
六、备注
Cox回归使用的前提是满足比例风险假定(PH假定),即主要研究因素(包括Covariates框中放入的其它协变量)的各层间均应满足PH假定。如果不满足,则应当将变量放入Strata框中进行分层变量控制。cda数据分析师培训
具体如何判断各变量是否满足PH假定,以及如何设置Strata对话框对变量进行分层控制,咱们以后再聊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29