
SPSS详细操作:生存资料的Cox回归分析
一、问题与数据
某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年。研究以死亡为结局,两种治疗方式为主要研究因素,同时考虑调整年龄和性别的影响,比较两种疗法对肺癌患者生存的影响是否有差异。变量的赋值和部分原始数据见表1和表2。
表1. 肺癌患者生存的影响因素与赋值
表2. 两组患者的生存情况
二、对数据结构的分析
该研究以死亡为结局,治疗方式为主要研究因素,每个研究对象都有生存时间(随访开始到死亡、失访或随访结束的时间),同时考虑调整年龄和性别的影响。欲了解两种疗法对肺癌患者生存的影响是否有差异,可以用Cox比例风险模型(Cox proportional-hazards model,也称为Cox回归)进行分析。
实际上,Cox回归的结局不一定是死亡,也可以是发病、妊娠、再入院等。其共同特点是,不仅考察结局是否发生,还考察结局发生的时间。
在进行Cox回归分析前,如果样本不多而变量较多,建议先通过单变量分析(KM法绘制生存曲线、Logrank检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
单因素分析后,应当考虑应该将哪些自变量纳入Cox回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,没有发现差异有统计学意义,但是临床上认为与因变量关系密切的自变量。
三、SPSS分析方法
1. 数据录入SPSS
2. Analyze→Survival→Cox Regression
3. 选项设置
1)主对话框设置:
①将生存时间变量送入Time框中→②将结局变量送入Status框中→③点击Define Event→④定义表示终点事件发生的数值(此例中为死亡,用1表示)→⑤Continue→⑥将分组因素和需要调整的变量送入Covariates框中→⑦Method选择Forward:LR。
对于自变量筛选的方法(Method对话框),SPSS提供了7种选择,使用各种方法的结果略有不同,读者可相互印证。各种方法之间的差别在于变量筛选方法不同,其中Forward: LR法(基于最大似然估计的向前逐步回归法)的结果相对可靠,但最终模型的选择还需要获得专业理论的支持。
2)Categorical Covariates选项设置:
①将分类变量group选入右侧Categorical Covariates里,②并选择Reference Category以First为参比(即选择最小数值为参照组),其他按默认选项→③Change→Continue
注意:在数据录入时,建议将二分类变量赋值为0和1;多分类变量赋值为0、1、2、3或者1、2、3、4等,并根据以下情况设置Categorical Covariates选项:
A. 以下情况,可以不定义Categorical Covariates选项:当自变量是二分类变量,并且赋值的差值为1,例如赋值为0和1,也不需要绘制该变量不同组间的生存曲线时。
B. A以外的情况都必须定义Categorical Covariates选项。需特别注意两种情况:①当自变量是二分类变量,但要在Plots选项中设置,得到不同组间的生存曲线时。比如本例中,group为二分类变量,但要观察不同用药组间的生存曲线,就需要在Categorical Covariates选项中定义group变量;②多分类变量时。
3)Plots选项设置:
要绘制生存曲线,①可选择Plots Type中的Survival作为输出的图形,②将主要分类变量选入右侧Separate lines for中,可以输出该变量不同组间对应的生存曲线,其他按默认选项→Continue
4)Options选项设置:
①选择Model Statics中的CI for exp(B)要求输出HR值的95%置信区间,②选择Display model imformation中的At last step(即要求仅输出最后一步的模型),其他按默认选项→Continue→OK
四、结果解读
1. Case Processing Summary表格给出了分析数据的基本情况,其中包括事件发生数(Event)、删失数(Censored)和总数(Total)等信息。
2.Categorical Variable Codings表格给出了Categorical Covariates选项中设置的变量(本例中为group)所对应的赋值情况和频率(Frequency)。最后一列给出了变量编码的情况。脚注b. Indicator Parameter Coding说明了本研究中group变量以First为参照组(Categorical Covariates选项中的设置)。
3.Omnibus Tests of Model Coefficients表格给出了模型中所有变量的回归系数全为0的检验结果。对于本例,①Score统计量为5.065,P=0.024;②对数似然比检验χ2=5.399,P=0.020。说明模型中至少有一个自变量的HR值不为1,模型整体检验有统计学意义。
4.Variables in the Equation表格给出了参数估计的结果。结果显示最后筛选后的模型仅包含group变量,①P=Sig.=0.029说明治疗方式为影响肺癌患者预后的独立因素。②相对危险度HR=Exp(B)=0.410,说明使用新药的患者死亡风险为使用常规药物患者的0.410倍,③HR的95%可信区间(95% CI)为0.184-0.914。
5.生存曲线。前述Plots选项的设置要求输出按照不同药物分组的生存曲线。新药组(赋值为1,绿色线条)比常规药物组(赋值为0,蓝色线条)的生存率高。值得注意的是,该图片并未编辑,不符合给杂志投稿的要求。关于图片的编辑此处不再展开讨论。
五、撰写结论
治疗方式为影响肺癌的独立因素(P=0.029)。与常规药物相比,使用新药的肺癌患者的死亡风险低于使用常规药物的患者,HR=0.410(95% CI: 0.184-0.914)。
六、备注
Cox回归使用的前提是满足比例风险假定(PH假定),即主要研究因素(包括Covariates框中放入的其它协变量)的各层间均应满足PH假定。如果不满足,则应当将变量放入Strata框中进行分层变量控制。cda数据分析师培训
具体如何判断各变量是否满足PH假定,以及如何设置Strata对话框对变量进行分层控制,咱们以后再聊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15