京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与智能制造融合应用
作为一个数学家,用现在的话讲,应该是一个数据科学家。今天,我的绝大部分内容是从基础上演讲。在听了各位领导致辞和专家演讲后,我讲两个观点:
第一,我非常欣赏萧山区对大数据的认识,我不认为大数据对近一两年GDP的贡献有那么大,但肯定的说对于三年、五年之后的GDP贡献巨大。换句话说,只有沉得下心,愿意扎扎实实打好基础的政府和企业,才能从大数据技术上获益。
第二,大数据技术并不是已经成熟的技术,是一个正在从应用中逐渐走向成熟的技术,目前的挑战多于成熟。
今天演讲主要分为两部分:大数据承载了如此多的期望,有些期望是合理的,有些期望未必合理,我想从科学的角度说一些科学问题。第二部分回到智能制造,也就是工业大数据的重要方面,谈谈自己的认识。
第一部分:大数据及大数据原理
什么是大数据?大家都知道数据是什么?数据就是资料的数字化。资料是什么?资料就是生产过程、管理过程,乃至经济、社会、生活过程的记忆,那些记忆可能表现在一个文件,一段演讲,一段文字等等,这是资料。资料不放在计算机上,一般不叫数据。但放在计算机上就叫数据,所以有个标准的说法,数据是指以编码形式存在的信息载体才是数据。因而,数据一定要放在机器上,要有空间。其实真正的大数据是指大而复杂的资料集,这些复杂性包括了海量性、时变性、异构性、分布性等等,我们从互联网数据能够观察到的特征。
到底什么是大,我画了一张图,希望解释什么是大。这件图是我把对数据的观测放在一起,大家什么都看不见,如果再观察五年,或许还没有看清楚。再观察五年,放到一起看看原来是一个大象的轮廓,再观察五年就看得更细致了,它的牙齿、脚都可以看得更清楚。这张图是告诉大家什么叫大数据,什么叫大。从这个观察可以看出,随着信息获取的发展,从量变到质变。量变就是数据的增加,质变就是随着规模的增加,到某一刻开始,人们就可以只看看一些局部,只看看一些数据就能够知道它背后的故事。这个量就叫数据的临界量。
凡是对一些问题积攒的数据量超过这个量,就叫大数据,反之则不叫大数据。因而讲大数据是两件事:第一,大和小是相对概念;第二,相对特定问题而言,不同的决策问题要求的数据不一样。否则大家就认为现在是大数据时代,大数据可以解释任何事情,我认为不要神化它,大数据可以做很多事,但也不是能做所有事,这是我的基本观点。
现在都说大数据是基本的生产资料,大数据是基本的生产力,因而,大数据是经济社会的基本生产资源。看看互联网就知道,互联网主要在信息传递上发挥作用,近几年的发展,是把互联网从复杂的信息传递到消费互联,再到生产互联(也就是物联网),再到智慧互联,这就是互联网的大体走向。在这个走向中非常大的问题就是信息技术在互联网产生以后,和其他任何领域要深度整合,这就是今天谈论信息工业化、谈论大数据的主要原因。
这里面还有一些问题要说清楚。我们知道了太多的新技术,比如说物联网,比如说互联网,比如说人工智能,比如说移动互联网等等,其实这些新技术都是信息技术的一个层面,大家不要期望某一项技术包打天下。真正产生效益和作用的是所有技术的综合运用,这是今天和大家分享的第二个观点。千万不要以为有了大数据就不讲物联网,讲物联网就不讲互联网,讲互联网就不讲人工智能,其实大家是互补的,都是从不同的层面讲问题。
我觉得有一点是肯定的,互联网和云计算是基础设施,这是肯定的。物联网讲的是交互方式,人工智能讲的是应用模式。那么,大数据讲的是信息技术,是人和人、人和机器、机器和机器交互的内容特征。所以,从这个意义上讲,大数据是最底层的信息技术。因而,大数据掌握的技术,是基本的标配,任何工业要实现“两化”,任何政府要实现科学决策,大数据是基本标配,这是我讲的第三个观点。
大家都知道大数据怎么应用,我想讲五句话,大数据从数据分析,到预处理,到管理方式,到适当的分析和挖掘,到结果解释,到修正,大家记住如果大数据是不走样,至少不走弯路。
第一,明确目标是前提。好像和大数据没有关系,但我认为这是最重要的。我们用大数据不是说国家有个战略,有个文件就用大数据。我想对每个地区、每个政府、每个企业,要解决的问题不一样,必须要真正解决问题,大数据才有用。
第二,拥有数据是基础。什么是大数据产业?大数据产业就是以现代技术设施为基础,以数据为生产要素,以数据的价值挖掘为创新活动的产业,叫大数据产业。因而没有数据谈不上大数据产业。
第三,计算平台是支撑。换句话说,没有一定的计算架构和计算平台,计算不了。它是支撑作用,但做企业的人不必过分强化,也不必过分低估。
第四,分析技术是核心。这是今天较少讲的主题,也是领导较少讲的主题。我非常担心在整个大数据的链条中,有些链条做得过分粗壮,有的链条过分纤弱了一些,也就是我担心的产业链布局不均衡,有的过分膨胀,会产生新的产能过剩。
第五,产生效益是根本。如果四句话,给大家四句话,数据是基础,平台是支撑,技术是核心,赚钱是王道,记住这四句话不走样也不失望。
为什么大数据可以带来超凡价值、背后的原理是什么?在这个大潮中为思维带来怎样的改变呢?我概括了三条原理:第一,量变到质变的原理。大数据之所以有用,是因为数据积攒到了可以质变,通过数据就可以知道背后的故事,这是这个原理起作用。第二,分析出价值原理。刚才已经说了,如果存储不分析,无疑是只买米不做 饭,产生不了GDP,所以要靠分析,要靠挖掘。第三,跨界关联原理。举一个简单的例子,假设一个火锅店的老板想提高营业额,这是他的目标。他当然会收集一年当中的采购量资料、现金流资料等等,这些是企业内部数据。但如果能采集到这个火锅店周围的人口分布数据,如果能够买得到这个地区天气预报的精细数据,对火锅店的营业而言就是极为重要的。我们都知道湖南人和四川人比较喜欢吃火锅,天气潮湿的时候比较喜欢吃火锅,这就是赚钱的道理,就是跨界关联原理。这三条原理是我概括出来的,和大家分享。
这个过程中有很多观念要改变:第一,数据是资产,大家都知道数据和资产;第二,用户是资源。谈谈用户,过去企业是上帝,那是教育员工的服务态度,因为我们都知道神是拿来敬,用户是心里尊重的。但到了大数据时代,产业模式变了,用户是我们的生产资源,要个性化服务。如果没有用户的反馈,为谁服务?这就是手机运营商的道理,我知道过几年数据会免费,因为重要的是四大运营商在实时报告我们的信息、行为、爱好,这些是他们挣钱的主要依据,是不是资源?第三,服务即感知。滴滴、快车已经告诉了我们这件事情,还有公共服务免费,高价值服务盈利也是基本的盈利模式,就是大家很熟悉的羊毛出在猪身上,这是观念。
刚才说了,大数据突飞猛进,能够用来解决相当多的问题,但千万不要以为大数据技术已经成熟了,一定不要这样问题。其实挑战很多,今天不是讲挑战,但概括的说基本挑战是什么?我认为,主要挑战是分析基础被破坏;计算技术待革新,真伪判定需要重建,对新技术的盲目所引起的盲从。
第二部分:智能制造大数据:机遇与挑战
制造大数据非常重要,“中国制造2025”主要讲的就是这件事情。继互联网之后,真正能够对企业产生重大影响的大概就是大数据,再次重申,讲大数据的时候不要和其他技术隔离开。我也重申,现在人工智能潮正在到来,我要告诉大家的是不要冷落了大数据,其实人工智能在可见时间内,真正能够称得上人工智能,真正发挥作用的就是数据智能,就是大数据。因为人工智能简单来说是两个大的类型,一类是模型人脑工作机制、行为方式,是仿脑类脑的技术。另一类是快速的认识,因为人脑对大数据的认识本身没有那么快,但获取数据的速度极强,可以从数据中分析出人类认识问题特定的方式方法,这部分就是数据智能,也叫人工智能。所以,真正起作用的主要是数据智能,而从这个意义上讲,不要和大数据分开。
大家说大数据能服务于转型升级,转什么型,升什么级,至少要清楚这个问题。对工业来讲,转型是什么?就是转过去以产品为中心,以产品组织设计、制造、销售管理的过程,到以服务为中心,以定制化为中心。
最近有一个基本的观点,说从过去的老三基到新三基,过去的材料、工艺、零部件是老三基,现在的新三基是大数据、传感器和零部件。我希望大家了解对一个行业来讲,数据极其复杂,来源于设计、制造、运行和服务,仔细分析每一步的数据。离散型和连续型并存,数值型和非数值类型并存,结构化和非结构化并存。大数据必须关注完整属性,必须关注产品全寿命特性,必须关注全方位连接,关注制造系统融合等等,这些要求使得我们认为基本难点在认知知识数据。全链条数据,如物理 模型的结合,都将是这方面技术的难点。
我想最基本的科学问题,可以明确一些基本问题。如果大数据用在技术中,物联网技术、云计算技术、大数据技术、人工智能技术都是基本的。总体上说,我想向大家传递的是如果要做工业大数据,互联互通是基础。首先解决数据采集问题,就是互联互通问题;定制化服务是中心,基本模式要转变懂数据会分析是关键。今天我想 用这点时间和大家分析基本的观点。
第三部分:结语
大数据是新一代信息技术的基础性技术,需要应用,工业大数据非常有潜力,但一定要解决好定位问题、规划问题、切入点问题、标准问题、开发共享问题等等,互联互通是基础,定制化服务是中心,懂数据会分析是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22