R语言通过loess去除某个变量对数据的影响
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较。标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较。
Loess局部加权多项式回归
LOWESS最初由Cleveland 提出,后又被Cleveland&Devlin及其他许多人发展。在R中loess 函数是以lowess函数为基础的更复杂功能更强大的函数。主要思想为:在数据集合的每一点用低维多项式拟合数据点的一个子集,并估计该点附近自变量数据点所对应的因变量值,该多项式是用加权最小二乘法来拟合;离该点越远,权重越小,该点的回归函数值就是这个局部多项式来得到,而用于加权最小二乘回归的数据子集是由最近邻方法确定。
最大优点:不需要事先设定一个函数来对所有数据拟合一个模型。并且可以对同一数据进行多次不同的拟合,先对某个变量进行拟合,再对另一变量进行拟合,以探索数据中可能存在的某种关系,这是普通的回归拟合无法做到的。
LOESS平滑方法
1. 以x0为中心确定一个区间,区间的宽度可以灵活掌握。具体来说,区间的宽度取决于q=fn。其中q是参与局部回归观察值的个数,f是参加局部回归观察值的个数占观察值个数的比例,n是观察值的个数。在实际应用中,往往先选定f值,再根据f和n确定q的取值,一般情况下f的取值在1/3到2/3之间。q与f的取值一般没有确定的准则。增大q值或f值,会导致平滑值平滑程度增加,对于数据中前在的细微变化模式则分辨率低,但噪声小,而对数据中大的变化模式的表现则比较好;小的q值或f值,曲线粗糙,分辨率高,但噪声大。没有一个标准的f值,比较明智的做法是不断的调试比较。
2. 定义区间内所有点的权数,权数由权数函数来确定,比如立方加权函数weight = (1 - (dist/maxdist)^3)^3),dist为距离x的距离,maxdist为区间内距离x的最大距离。任一点(x0,y0)的权数是权数函数曲线的高度。权数函数应包括以下三个方面特性:(1)加权函数上的点(x0,y0)具有最大权数。(2)当x离开x0(时,权数逐渐减少。(3)加权函数以x0为中心对称。
3. 对区间内的散点拟合一条曲线y=f(x)。拟合的直线反映直线关系,接近x0的点在直线的拟合中起到主要的作用,区间外的点它们的权数为零。
4. x0的平滑点就是x0在拟合出来的直线上的拟合点(y0,f( x0))。
5. 对所有的点求出平滑点,将平滑点连接就得到Loess回归曲线。
R语言代码
loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)
formula是公式,比如y~x,可以输入1到4个变量;
data是放着变量的数据框,如果data为空,则在环境中寻找;
na.action指定对NA数据的处理,默认是getOption("na.action");
model是否返回模型框;
span是alpha参数,可以控制平滑度,相当于上面所述的f,对于alpha小于1的时候,区间包含alpha的点,加权函数为立方加权,大于1时,使用所有的点,最大距离为alpha^(1/p),p 为解释变量;
anp.target,定义span的备选方法;
normalize,对多变量normalize到同一scale;
family,如果是gaussian则使用最小二乘法,如果是symmetric则使用双权函数进行再下降的M估计;
method,是适应模型或者仅仅提取模型框架;
control进一步更高级的控制,使用loess.control的参数;
其它参数请自己参见manual并且查找资料
loess.control(surface = c("interpolate", "direct"),
statistics = c("approximate", "exact"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, ...)
surface,拟合表面是从kd数进行插值还是进行精确计算;
statistics,统计数据是精确计算还是近似,精确计算很慢
trace.hat,要跟踪的平滑的矩阵精确计算或近似?建议使用超过1000个数据点逼近,
cell,如果通过kd树最大的点进行插值的近似。大于cell floor(nspancell)的点被细分。
robust fitting使用的迭代次数。
predict(object, newdata = NULL, se = FALSE,
na.action = na.pass, ...)
object,使用loess拟合出来的对象;
newdata,可选数据框,在里面寻找变量并进行预测;
se,是否计算标准误差;
对NA值的处理
实例
生物数据分析中,我们想查看PCR扩增出来的扩增子的测序深度之间的差异,但不同的扩增子的扩增效率受到GC含量的影响,因此我们首先应该排除掉GC含量对扩增子深度的影响。
数据
amplicon 测序数据,处理后得到的每个amplicon的深度,每个amplicon的GC含量,每个amplicon的长度
先用loess进行曲线的拟合
gcCount.loess <- loess(log(RC+0.01)~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2)
画出拟合出来的曲线
predictions1<- predict (gcCount.loess,RC_DT$GC)
#plot scatter and line
plot(RC_DT$GC,log(RC_DT$RC+0.01),cex=0.1,xlab="GC Content",ylab=expression(paste("log(NRC"["lib"],"+0.01)",sep="")))
lines(RC_DT$GC,predictions1,col = "red")
取残差,去除GC含量对深度的影响
#sustract the influence of GC
resi <- log(RC_DT$RC+0.01)-predictions1
RC_DT$RC <- resi
setkey(RC_DT,GC)
此时RC_DT$RC就是normalize之后的RC
画图显示nomalize之后的RC,并将拟合的loess曲线和normalize之后的数据保存
#plot scatter and line using Norm GC data
plot(RC_DT$GC,RC_DT$RC,cex=0.1,xlab="GC Content",ylab=expression("NRC"["GC"]))
gcCount.loess <- loess(RC~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2)
save(gcCount.loess,file="/home/ywliao/project/Gengyan/gcCount.loess.Robject")
predictions2 <- predict(gcCount.loess,RC_DT$GC)
lines(RC_DT$GC,predictions2,col="red")
save(RC_DT,file="/home/ywliao/project/Gengyan/RC_DT.Rdata")
当然,也想看一下amplicon 长度len 对RC的影响,不过影响不大
全部代码如下:
library(data.table)
load("/home/ywliao/project/Gengyan/RC_DT.Rdata")
RC_DT <- na.omit(RC_DT[Type=="WBC",])
####loess GC vs RC####
gcCount.loess <- loess(log(RC+0.01)~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2)
predictions1<- predict (gcCount.loess,RC_DT$GC)
#plot scatter and line
plot(RC_DT$GC,log(RC_DT$RC+0.01),cex=0.1,xlab="GC Content",ylab=expression(paste("log(NRC"["lib"],"+0.01)",sep="")))
lines(RC_DT$GC,predictions1,col = "red")
#sustract the influence of GC
resi <- log(RC_DT$RC+0.01)-predictions1
RC_DT$RC <- resi
setkey(RC_DT,GC)
#plot scatter and line using Norm GC data
plot(RC_DT$GC,RC_DT$RC,cex=0.1,xlab="GC Content",ylab=expression("NRC"["GC"]))
gcCount.loess <- loess(RC~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2)
save(gcCount.loess,file="/home/ywliao/project/Gengyan/gcCount.loess.Robject")
predictions2 <- predict(gcCount.loess,RC_DT$GC)
lines(RC_DT$GC,predictions2,col="red")
save(RC_DT,file="/home/ywliao/project/Gengyan/RC_DT.Rdata")
####loess len vs RC###
setkey(RC_DT,Len)
len.loess <- loess(RC_DT$RC~RC_DT$Len, control = loess.control(surface = "direct"),degree=2)
predictions2<- predict (len.loess,RC_DT$Len)
#plot scatter and line
plot(RC_DT$Len,RC_DT$RC,cex=0.1,xlab="Length",ylab=expression(paste("log(RC"["GC"],"+0.01)",sep="")))
lines(RC_DT$Len,predictions2,col = "red")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03