京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计基础-均值功能的使用
均值过程计算一个或多个自变量类别中因变量的子组均值和相关的单变量统计。您也可以获得单因素方差分析、eta 和线性相关检验。
统计量。合计、个案数、均值、中位数、组内中位数、均值的标准误、最小值、最大值、范围、分组变量的第一个类别的变量值、分组变量的最后一个类别的变量值、标准差、方差、峰度、峰度标准误、偏度、偏度标准误、总和的百分比、总个案数的百分比、和的百分比、数量的百分比、几何均值以及调和均值。选项包括方差分析、eta、eta 平方和线性R 和R2 检验。
数据。因变量为定量变量,自变量为分类变量。分类变量的值可以为数字,也可以为字符串。
获得子组均值
从菜单中选择:
分析> 比较均值> 均值...
选择一个或多个因变量。
使用下列一种方法选择分类自变量:
选择一个或多个自变量。显示每个自变量的单独的结果。
选择一层或多层自变量。每一层都将进一步细分样本。如果在层1 中有一个自变量,层2 中也有一个自变量,结果就显示为一个交叉的表,而不是对每个自变量显示一个独立的表。
或者,单击选项选择可选统计量、方差表的分析、eta、eta 平方、R 和R2。
均值:选项
第一个. 显示在数据文件中遇到的第一个数据值。
几何均值. 数据值的乘积的n 次根,其中n 代表个案数目。
组内中位数. 针对编码到组中的数据计算的中位数。例如,如果对于每个30 年代的年龄数据的值都编码为35,40 年代的编码为45,依次类推,则组内中位数是由已编码的数据计算得出的。
调和均值. 在组中的样本大小不相等的情况下用来估计平均组大小。调和均值是样本总数除以样本大小的倒数总和。
峰度. 观察值聚集在中点周围的程度的测量。对于正态分布,峰度统计量的值为
0。正峰度值表示相对于正态分布,观察值在分布中心的聚集更多,同时尾部更薄,直到分布极值。在这一点,leptokurtic 分布的尾部比正态分布的尾部要厚。负峰度值表示相对于正态分布,观察值聚集得少并且尾部较厚,直到分布极值。在这一点,platykurtic 分布的尾部比正态分布的尾部要薄。
最后一个. 显示在数据文件中遇到的最后一个数据值。
最大值. 数值变量的最大值。
均值. 集中趋势的测量。算术平均,总和除以个案个数。
中位数. 第50 个百分位,大于该值和小于该值的个案数各占一半。如果个案个数为偶数,则中位数是个案在以升序或降序排列的情况下最中间的两个个案的平均。中位数是集中趋势的测量,但对于远离中心的值不敏感(这与均值不同,均值容易受到少数多个非常大或非常小的值的影响)。
最小值.数值变量的最小值。
N.个案(观察值或记录)的数目。
个案总数的百分比. 每个类别中的个案总数的百分比。
总和的百分比. 每个类别中的总和的百分比。
全距. 数值变量最大值和最小值之间的差;最大值减去最小值。
偏度. 分布的不对称性度量。正态分布是对称的,偏度值为0。具有显著正偏度值的分布有很长的右尾。具有显著的负偏度的分布有很长的左尾。作为一个指导,当偏度值超过标准误的两倍时,则认为不具有对称性。
峰度标准误. 峰度与其标准误的比可用作正态性检验(即,如果比值小于-2 或大于+2,就可以拒绝正态性)。大的正峰度值表示分布的尾部比正态分布的尾部要长一些;负峰度值表示比较短的尾部(变为像框状的均匀分布尾部)。
偏度标准误. 偏度与其标准误的比可以用作正态性检验(即,如果比值小于-2 或大于+2,就可以拒绝正态性)。大的正偏度值表示长右尾;极负值表示长左尾。
总和. 所有带有非缺失值的个案的值的合计或总计。
方差. 对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方。
第一层的统计量
Anova 表和eta. 显示单因素方差分析表,并为第一层中的每个自变量计算eta 和eta 平方(相关度量)。
线性相关检验. 计算与线性和非线性成分相关联的平方和、自由度和均方,以及F 比R和R方。如果自变量为短字符串,则不计算线性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27