
大数据给网络舆情带来的三大变革
随着互联网的迅速发展,大数据带来的信息爆炸正在影响着我们的工作、生活和思维。无论是政府还是企业,在未来的舆情监控、舆情研判方面都面临着大数据的挑战。
互联网的信息泛滥深切地影响着我们每个人的生活。网络信息的不断膨胀也给以往的舆情监测工作提出挑战。网络舆情监测要想适应现在大数据时代的监控要求就需要做出变革。包含舆情工作方式的变革、舆情管理思维的变革、舆情数据分析技术的变革。
一、 舆情监控工作方式的变革
在信息爆炸时代(社交媒体蓬勃发展的时代)来临之前,普通大众扮演的角色主要是信息的接受者,网络信息的可控性非常强。这就造成了舆情管理者的工作形式单一且没有很大压力。但是随着社交媒体的出现和迅速发展,普通大众扮演的角色也发生了变化,从信息的被动接受者变成了网络信息的缔造者与传播者。这就加快了信息的传播速度,加大了信息的不可控性。促使舆情监控工作从单一向多元转化,从监控信息到研判、疏导与处理转化。
二、 舆情监控管理思维的变革
社交媒体出现之前,一个单位的舆情管理者一般是单个人或是一个几人的团队组成,在工作单一的情况下,这样的体制完全可以满足需求。但是在这个信息爆炸的时代,只靠人工做舆情监控就有点天方夜谭了。在这个时代需要的是舆情管理的思维变革,靠智能监控系统改变现在的一切。由舆情监控系统代替繁重的人工工作。但由于舆情服务对于专业性的要求非常高,最为有效和专业的处理模式是专业团队+人工智能。
三、 舆情监控数据分析技术的变革
在数据量小的KB时代,人工审阅完全可以把控舆情脉动。但随着EB甚至ZB时代的到来,尤其是移动互联网数据的加入和渗透,人工审阅成为不可能完成的任务。这时需要的就是改变分析技术和分析方法。专业的舆情智能分析系统非常必要。
大数据的目标是前瞻与预测。对于舆情管理者而言,能通过大数据技术手段,分析事件的关注程度、传播情况、发展趋势、网民情绪变化等。也可以深入某个观点的影响程度,影响人群,从而预测舆情走向,辅助决策和判断。大数据分析技术给舆情分析带来更多的可能,舆情分析不再是分析样本数据,而是分析更多来源更复杂的数据。不再是看似精确性的定位于某条信息、某个人,而是在混杂的舆情信息中,发现趋势,预测走势。不再是非正即负的机械判断情感,而是分析相互关联的人物之间的情绪传递。、
大数据的蓬勃发展给舆情监控带来挑战,更是带来发展机遇。大数据也是舆情监控发展的必经之路。顺应大数据时代的潮流发展,把握热点舆情脉动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01