京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为企业带来竞争优势的4种方式
纵观整个移动互联网领域,数据已被认为是继云计算、物联网之后的又一大颠覆性的技术性革命,毋庸置疑,大数据市场是待挖掘的金矿,其价值不言而喻。根据SNS研究公司的研究报告显示,目前全球大数据市场价值为460亿美元,而这个报告预测,到2020年底,全球各行业厂商将在大数据硬件上花费超过720亿美元。
另一个关键的信号是数据中心市场的增长。根据Technavio公司的报告,亚太地区将成为增长最快的数据中心建设市场,其年复合增长率达到17%,到2020年的市场规模将达到200亿美元。这得益于基于云计算的服务产品,消费者数据存储库的挖掘,以及物联网的发展。
然而,如果企业不知道如何使用它来使他们的业务和员工受益,那么该公司就会面临大量数据的压力。以下是企业利用大数据获得竞争优势的一些创新的方式:
1提升客户体验
如今的消费者通过网上购买来控制他们的购物体验,这使得实体商店在分析的帮助下与消费者保持联系至关重要。根据AccentureInteractive公司的一项研究,91%的高绩效客户体验者表示,数据分析对于改善客户体验至关重要。
通过一个实时商店监控平台(RTSMP),具有跟踪客户在商店内浏览商品的能力。美国的RetailNext公司就提供这样的一个平台。通过其集中的SaaS平台,自动收集和分析购物者的行为数据,为零售商提供洞察力,以实时改善客户体验。这些平台可以帮助零售商优化店面布局,并促进商品销售。
通过业务分析软件和零售专业知识,还可以帮助企业更好地了解购物者的旅程,以增加同店销售,减少盗窃,并消除不必要的成本。
购物者分析工具还可帮助电子商务公司利用客户数据跟踪网站数据。他们可以通过更改价格或网站布局或,以及使用广告来阻止购物者放弃购物车,从而提高销售量。
2个性化教育材料
教育提供者,特别是高等教育机构,正在感受创新和数字化在日益竞争激烈的教育生态系统发展的压力。根据调查机构Gartner公司预测,2016年全球高等教育支出将增长1.2%,达到382亿美元。
数字学习方法的全球需求从大规模在线课程(MOOC)的日益普及显而易见,例如在Coursera上发现的那些,它是拥有超过2100万用户的MOOC的领导者。该平台与世界各地的顶尖大学和研究所合作,并提供在线课程和认证,如耶鲁大学,北京大学,新加坡国立大学和南洋理工大学。
另外还有一些公司,如欧莱雅和波士顿咨询集团,甚至与Coursera公司合作,通过在线学习解决方案提升移动员工的水平。Coursera公司最近还推出了一个企业平台“CourseraforBusiness”,以满足企业快速发展的培训和发展需求。
数以百万计的人采用具有产生大量学习数据的能力的MOOC。这些数据在自适应学习中被利用,这是一种根据每个学生的独特需求个性化教育材料的方法。
通过大数据创新,自适应学习可以通过自动化内容的定制变得更加个性化。这允许学生接收适合他们个人学习能力和速度的学习内容。
3管理社交媒体活动
通过社交媒体渠道的有效监控和参,这对于当今企业获得的竞争优势至关重要。市场营销人员预计将在未来五年内,其社交媒体支出增加近一倍,占总营销预算的21%,而2015年的此类支出仅为11%。企业现在可以使用大数据技术创建一个数字前台,以改善客户体验管理。
4自动化网络威胁监测和响应
如今,缺乏安全意识的企业已经沦为网络罪犯的乐园。有些企业失去了大量的运营和私人客户数据。防护厂商赛门铁克公司发现,仅2015年,超过5亿条个人记录被盗或丢失。因此,从2017年到2021年,全球网络安全支出预计将超过1万亿美元。
随着黑客行为变得越来越普遍,企业需要复杂和预测性的解决方案来保护他们的业务数据和数字资产。随着移动设备和基于云计算的应用程序的激增,存在更多易受攻击的端点,如工作站,移动设备和服务器。而网络攻击也更具针对性和复杂性,使传统周界的防御措施无效。
网络安全解决方案利用大数据分析来检测、分析和响应恶意软件或嵌入式代码,可以显著地减少发现,并防止此类违规或威胁所需的时间。
此外,还可以采用安全和信息事件管理(SIEM)工具,通过大数据架构构建,允许其通过大量的设备和应用程序生成机器数据。机器学习和行为分析技术允许企业标出异常数据。
大数据越来越多地以创新的方式存在,并在以前无法想象的领域中使用,成为企业业务发展的强大的推动者。企业应考虑利用分析平台和解决方案的帮助发展业务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20