京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业必须考虑的关于大数据架构的6大问题
大数据在业务价值方面承诺了很多,但企业可能难以确定如何部署需要利用的架构和工具。从描述性统计,到预测建模,到人工智能的一切都是由大数据提供支持。而组织希望通过大数据来实现这一目标,并将决定其需要推出的工具。
在5月8日召开的2017年戴尔EMC世界会议上,戴尔EMC数据分析的主要系统工程师Cory Minton发表了演示文稿,解释了组织在部署大数据时必须做出的最大决定。在做出决定开始之前,每个企业都要问这六个问题:
1.购买与构建?
要问的第一个问题是组织是否要购买大型数据系统或从头开始构建。Teradata,SAS,SAP和Splunk的热门产品可以买到并简单实现,而Hortonworks,Cloudera,Databricks,Apache Flink可用于构建大型数据系统。
Minton表示,购买提供更短的时间,以及商品使用的简单性和良好的价值。然而,这种简单性通常会带来更高的成本,而这些工具通常在低多样性数据方面效果最佳。如果组织与供应商存在现有的关系,则可以更容易地分析新产品并尝试使用大型数据工具。
许多用于构建大数据系统的流行工具价格低廉或可以免费使用,并且它们可以更容易地利用独特的价值流。其建设路径为大规模和多样化提供了机会,但这些工具可能非常复杂。互操作性往往是管理员面临的最大问题之一。
2.批量与流数据?
Minton说,由Oracle,Hadoop MapReduce和Apache Spark等产品提供的批量数据是描述性的,可以处理大量的数据。他们也可以安排,并经常被用来建立一个数据科学家进行实验的产品平台。
像Apache Kafka,Splunk和Flink这样的产品可以提供能够捕获的流数据功能,以创建潜在的预测模型。Minton表示,使用流式传输数据,其速度胜过数据保真度,但也提供了巨大的规模和多样性。这对于认同DevOps文化的组织更为有用。
3.Kappa vs. lambda架构?
Twitter是lambda架构的一个例子。其数据被分为两个路径,其中一个路径被馈送到速度层进行快速分析,而另一个路径导致批处理和服务层。Minton表示,这种模式使组织能够访问批量和流媒体的见解,并平衡有损流。他说,这里的挑战是人们必须管理两个代码和应用程序基础。
Kappa架构将所有内容都视为流,但它是一个旨在实时保持数据保真度和流程的实时处理。所有数据都将写入不可变日志,以检查更改。其硬件高效,代码较少,这是Minton推荐给开始实施大数据的组织的一种模式。
4.公共云vs私有云?
大数据的公共和私有云需要许多相同的考虑。对于初学者来说,一个组织必须考虑到最适合他们的人才工作的环境。另外,还应该考虑数据来源,安全性和合规性需求,以及弹性消费模型。
5.虚拟化与物理性?
几年前,虚拟化基础设备与物理基础设施的争论更加激烈,Minton说。然而,虚拟化已经发展到可与物理硬件进行竞争,在大数据部署方面也变得类似。它归结为组织的管理员更舒适,适用于其现有的基础设施。
6.DAS vs. NAS?
Minton说,直接连接存储(DAS)以前是部署Hadoop集群的唯一方式。然而,现在IP网络增加了带宽,网络连接存储(NAS)选项对于大数据更为可行。
使用DAS很容易上手,而且该模型与软件定义的概念一致。它是为了处理性能和存储方面的线性增长而开发的,并且它与流式传输数据相当。
网络连接存储(NAS)可以很好地处理多协议需求,提供大规模的效率,并且还可以满足安全性和合规性需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15