京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-组间差异的非参数检验
7.5 组间差异的非参数检验
如果数据无法满足t检验或ANOVA的参数假设,可以转而使用非参数方法。举例来说,若结果变量在本质上就严重偏倚或呈现有序关系,那么你可能会希望使用本节中的方法。
7.5.1 两组的比较
若两组数据独立,可以使用Wilcoxon秩和检验(更广为人知的名字是Mann–Whitney U检验)来评估观测是否是从相同的概率分布中抽得的(即,在一个总体中获得更高得分的概率是否比另一个总体要大)。调用格式为:
其中的y是数值型变量,而x是一个二分变量。调用格式或为:
其中的y1和y2为各组的结果变量。
可选参数data的取值为一个包含了这些变量的矩阵或数据框。
默认进行一个双侧检验。你可以添加参数exact来进行精确检验,指定alternative="less"或alternative="greater"进行有方向的检验。
如果你使用Mann–Whitney U检验回答上一节中关于监禁率的问题,将得到这些结果:
你可以再次拒绝南方各州和非南方各州监禁率相同的假设(p < 0.001)。Wilcoxon符号秩检验是非独立样本t检验的一种非参数替代方法。它适用于两组成对数据和无法保证正态性假设的情境。调用格式与Mann–Whitney U检验完全相同,不过还可以添加参数paired=TRUE。让我们用它解答上一节中的失业率问题:
你再次得到了与配对t检验相同的结论。在本例中,含参的t检验和与其作用相同的非参数检验得到了相同的结论。当t检验的假设合理时,参数检验的功效更强(更容易发现存在的差异)。而非参数检验在假设非常不合理时(如对于等级有序数据)更适用。
7.5.2 多于两组的比较
在要比较的组数多于两个时,必须转而寻求其他方法。考虑7.4节中的state.x77数据集。它包含了美国各州的人口、收入、文盲率、预期寿命、谋杀率和高中毕业率数据。如果你想比较美国四个地区(东北部、南部、中北部和西部)的文盲率,应该怎么做呢?这称为单向设计(one-way design),我们可以使用参数或非参数的方法来解决这个问题。如果无法满足ANOVA设计的假设,那么可以使用非参数方法来评估组间的差异。如果各组独立,则Kruskal—Wallis检验将是一种实用的方法。如果各组不独立(如重复测量设计或随机区组设计),那么Friedman检验会更合适。
Kruskal–Wallis检验的调用格式为:
其中的y是一个数值型结果变量, A是一个拥有两个或更多水平的分组变量(grouping variable)。(若有两个水平,则它与Mann–Whitney U检验等价。)而Friedman检验的调用格式为:
其中的y是数值型结果变量, A是一个分组变量, 而B是一个用以认定匹配观测的区组变量 (blocking variable) 。在以上两例中, data皆为可选参数,它指定了包含这些变量的矩阵或数据框。
让我们利用Kruskal–Wallis检验回答文盲率的问题。首先,你必须将地区的名称添加到数据集中。这些信息包含在随R基础安装分发的state.region数据集中。
现在就可以进行检验了:
显著性检验的结果意味着美国四个地区的文盲率各不相同(p
<0.001)。虽然你可以拒绝不存在差异的原假设,但这个检验并没有告诉你哪些地区显著地与其他地区不同。要回答这个问题,你可以使用Mann–Whitney
U检验每次比较两组数据。一种更为优雅的方法是在控制犯第一类错误的概率(发现一个事实上并不存在的差异的概率)的前提下,执行可以同步进行的多组比较,这样可以直接完成所有组之间的成对比较。
npmc包提供了所需要的非参数多组比较程序。
说实话,我将本章标题中基本的定义拓展了不止一点点,但由于在这里讲非常合适,所以希望你能够容忍我的做法。第一步,请先安装npmc包。此包中的npmc()函数接受的输入为一个两列的数据框,其中一列名为var(因变量),另一列名为class(分组变量)。代码清单7-20中包含了可以用来完成计算的代码。
调用了npmc的语句生成了六对统计比较结果(东北部对南部、东北部对中北部、东北部对西部、南部对中北部、南部对西部,以及中北部对西部) 。可以从双侧的p值(p.value.2s)看出南部与其他三个地区显著不同,而其他三个地区之间并没有什么不同。在 处可以看到南部的文盲率中间值更高。注意, npmc在计算积分时使用了随机数,所以每次计算的结果会有轻微的不同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22