R语言-组间差异的非参数检验
7.5 组间差异的非参数检验
如果数据无法满足t检验或ANOVA的参数假设,可以转而使用非参数方法。举例来说,若结果变量在本质上就严重偏倚或呈现有序关系,那么你可能会希望使用本节中的方法。
7.5.1 两组的比较
若两组数据独立,可以使用Wilcoxon秩和检验(更广为人知的名字是Mann–Whitney U检验)来评估观测是否是从相同的概率分布中抽得的(即,在一个总体中获得更高得分的概率是否比另一个总体要大)。调用格式为:
其中的y是数值型变量,而x是一个二分变量。调用格式或为:
其中的y1和y2为各组的结果变量。
可选参数data的取值为一个包含了这些变量的矩阵或数据框。
默认进行一个双侧检验。你可以添加参数exact来进行精确检验,指定alternative="less"或alternative="greater"进行有方向的检验。
如果你使用Mann–Whitney U检验回答上一节中关于监禁率的问题,将得到这些结果:
你可以再次拒绝南方各州和非南方各州监禁率相同的假设(p < 0.001)。Wilcoxon符号秩检验是非独立样本t检验的一种非参数替代方法。它适用于两组成对数据和无法保证正态性假设的情境。调用格式与Mann–Whitney U检验完全相同,不过还可以添加参数paired=TRUE。让我们用它解答上一节中的失业率问题:
你再次得到了与配对t检验相同的结论。在本例中,含参的t检验和与其作用相同的非参数检验得到了相同的结论。当t检验的假设合理时,参数检验的功效更强(更容易发现存在的差异)。而非参数检验在假设非常不合理时(如对于等级有序数据)更适用。
7.5.2 多于两组的比较
在要比较的组数多于两个时,必须转而寻求其他方法。考虑7.4节中的state.x77数据集。它包含了美国各州的人口、收入、文盲率、预期寿命、谋杀率和高中毕业率数据。如果你想比较美国四个地区(东北部、南部、中北部和西部)的文盲率,应该怎么做呢?这称为单向设计(one-way design),我们可以使用参数或非参数的方法来解决这个问题。如果无法满足ANOVA设计的假设,那么可以使用非参数方法来评估组间的差异。如果各组独立,则Kruskal—Wallis检验将是一种实用的方法。如果各组不独立(如重复测量设计或随机区组设计),那么Friedman检验会更合适。
Kruskal–Wallis检验的调用格式为:
其中的y是一个数值型结果变量, A是一个拥有两个或更多水平的分组变量(grouping variable)。(若有两个水平,则它与Mann–Whitney U检验等价。)而Friedman检验的调用格式为:
其中的y是数值型结果变量, A是一个分组变量, 而B是一个用以认定匹配观测的区组变量 (blocking variable) 。在以上两例中, data皆为可选参数,它指定了包含这些变量的矩阵或数据框。
让我们利用Kruskal–Wallis检验回答文盲率的问题。首先,你必须将地区的名称添加到数据集中。这些信息包含在随R基础安装分发的state.region数据集中。
现在就可以进行检验了:
显著性检验的结果意味着美国四个地区的文盲率各不相同(p
<0.001)。虽然你可以拒绝不存在差异的原假设,但这个检验并没有告诉你哪些地区显著地与其他地区不同。要回答这个问题,你可以使用Mann–Whitney
U检验每次比较两组数据。一种更为优雅的方法是在控制犯第一类错误的概率(发现一个事实上并不存在的差异的概率)的前提下,执行可以同步进行的多组比较,这样可以直接完成所有组之间的成对比较。
npmc包提供了所需要的非参数多组比较程序。
说实话,我将本章标题中基本的定义拓展了不止一点点,但由于在这里讲非常合适,所以希望你能够容忍我的做法。第一步,请先安装npmc包。此包中的npmc()函数接受的输入为一个两列的数据框,其中一列名为var(因变量),另一列名为class(分组变量)。代码清单7-20中包含了可以用来完成计算的代码。
调用了npmc的语句生成了六对统计比较结果(东北部对南部、东北部对中北部、东北部对西部、南部对中北部、南部对西部,以及中北部对西部) 。可以从双侧的p值(p.value.2s)看出南部与其他三个地区显著不同,而其他三个地区之间并没有什么不同。在 处可以看到南部的文盲率中间值更高。注意, npmc在计算积分时使用了随机数,所以每次计算的结果会有轻微的不同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08