
SPSSModeler中数据测量类型的含义
数据测量类型
______________________________________________________________________________________
设置字段角色
字段的角色用于指定其在模型构建过程中的用法 - 例如,字段是输入还是目标(预测的对象)。
注意:“分区”、“频率”和“记录标识”角色只能分别应用到单个字段。
可用的角色如下:
输入。字段将用作机器学习的输入(预测变量字段)。
目标。字段将用作机器学习的输出或目标(模型将尝试预测的字段之一)。
两者。字段将被 Apriori
节点同时用作输入和输出。所有其他建模节点都将忽略该字段。
无。机器学习将忽略该字段。测量级别已设置为无类型的字段将在角色列中自动设置为无。
分区。指明字段用于将数据分区为单独的样本(用于训练、测试,也可用于验证)。该字段必须属于实例化集合类型,具有两个或三个可能值(在“字段值”对话框中定义)。第一个值表示训练样本,第二个值表示测试样本,第三个值(如果存在)表示验证样本。所有其他值都将被忽略,且不能使用标志字段。请注意,要在分析中使用分区,必须在相应的模型构建或分析节点的“模型选项”选项卡中启用分区。启用分区时,会将对于分区字段具有空值的记录从分析中排除。如果已在流中定义多个分区字段,那么必须在每个相应建模节点的“字段”选项卡中指定单一分区字段。如果数据中不存在适合的字段,您可以使用“分区”节点或“派生”节点进行创建。请参阅主题分区节点,了解更多信息。
分割。(仅名义、有序和标志字段)指定为字段的每个可能值构建一个模型。
频率。 (仅数字字段)设置此角色允许将字段值用作记录的频率加权因子。仅
C&R 树、CHAID、QUEST
和线性模型支持此功能;所有其他节点将忽略此角色。在支持此功能的建模节点的“字段”选项卡上,选择使用频率权重以启用频率加权。
记录标识。此字段将用作唯一记录标识。大多数节点都会忽略此特征;但它受线性模型支持,并且是 IBM Netezza 数据库内挖掘节点所必需的。
离散变量
连续变量
离散型随机变量只可能出现可数型的实现值,比如自然数集,{0,1}等等,常见的有二项随机变量,泊松随机变量等。
连续型随机变量的实现值是属于不可数集合的,比如(0,1],实数集,常见的有正态分布,指数分布,均匀分布等。
这里涉及集合论里可数和不可数的概念,如果你没学过,讲简单点,前者可能出现的数值你是可以掰着手指头一个一个数的,但是后者却是不可能的。
SPSS Modeler 18 如果已经过期,破解就没法用了。破解程序只能在IBM SPSS Modeler
没有结束试用其实才可以起作用。
附上,试用过期后,重新试用的方法:
在临时许可过期之后,
1. 删除C:\Users\All Users\SafeNet Sentinel\Sentinel RMS Development
Kit\System下的所有文件;
若是win7,此目录变更为:C:\ProgramData\SafeNet Sentinel\Sentinel RMS
Development Kit\System
2. 用管理员身份运行C:\Program Files\IBM\SPSS\Modeler\18\bin\licenseinit.exe,提示输入Base product feature code:和Version (with a decimal point):时可以直接回车。
3、重新启动IBM SPSS Modeler 就可以重新试用了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29