京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Hadoop有一个名为“HDFS”的分布式文件系统,它的设计目的是提供一个高容错,且能部署在廉价硬件的分布式系统;它的设计参照了Google的GFS(Google分布式文件系统);它能支持高吞吐量,适合大规模数据集应用。
HDFS上的文件被划分为以固定块大小的多个分块(默认为64MB,如此大是为了最小化寻址开销),每个块作一个独立的存储单元。
这样做有两个好处:第一可以存储容量大于单一磁盘容量的文件;第二大大简化了存储子系统的设计(只需要管理块,而且块的元数据并不需要与块一同存储)。将每个块复制到少数几个独立的机器上(默认为3个),可以确保在块、磁盘或机器发生故障后数据不会丢失(即发现一个块不可用,系统会从其他地方读取另一个复本,同时重新复制该复本到一台正常的机器上)。下图展示了这些特性。
HDFS集群由一个NameNode(管理者)和多个dataNode(工作者)组成。HDFS解决了单点问题,HDFS集群的管理者是非常重要。NameNode管理文件系统的命名空间,它维护着文件系统树及整颗树内所有的文件和目录,同时也记录着每个文件中各个块到DataNode。同时,NameNode(管理者)包含主要节点(Primary)和备份节点(Stand by),如果Primary出现问题,Stand By可自动接替Primary继续工作。DataNode主要负责响应文件系统客户端发出的读写请求,同时还将在NameNode的指导下负责执行文件的创建、删除以及复制。
Hadoop的MapReduce(分布式计算模型)处理框架正是基于HDFS构建,它充分利用集群的并行优势来处理存储在HDFS上的数据文件。一个MapReduce任务在集群上以任务跟踪(TaskTracker)执行。每个TaskTracker被Job监控,当发现一个TaskTracker执行失败是,JobTracker就会将该任务分配到其他机器上运行。
在运行MapReduce作业经常会遇到各种问题,为了能进行必要的优化,理解HDFS原理还是很有必要的。下面介绍比较常见的一种情况:小文件如何拖累MapReduce作业及可采取的优化措施。
在MapReduce作业中,Hadoop将其输入数据划分成等长的小数据块,称为输入分片。Hadoop为每个分片构建一个map任务,或者说每一个map操作只处理一个输入分片。每个分片被划分为若干个记录,每条记录就是一个键值对,map一个接一个地处理记录。输入分片包括自己的大小和存储位置,存储位置供MapReduce系统将map任务尽量放在分片附近,分片大小用于排序分片,以便优先处理最大的分片,从而最小化作业运行时间。
在一般的MapReduce作业中,使用最多的输入数据格式通常是存储在HDFS上的文件。Hadoop自带的FileInputFormat类是所有使用文件作为其数据源实现的基类。它提供两个功能:一个用于指出作业的输入文件位置;一个是输入文件生成分片的实现代码段。
一个文件如果大于HDFS的块大小,那么它会被分割成多个块,存储在不同的位置。如果分片的大小大于HDFS的块大小,那么一个分片就会从不同位置读取,需要通过网络传输到map任务节点,与使用本地数据运行整个map任务相比,这种方法效率更低。另一方面,如果分片切分得太小,那么管理分片的总时间和构建map任务的总时间将决定作业的整个执行时间。因此,对于大多数作业来说,一个合理的分片大小趋向于HDFS的一个块的大小,即64MB。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28