京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Hadoop:一个分布式系统基础架构,由Apache基金会开发,用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力告诉运算和存储。
Hadoop是项目的总称,主要是由分布式存储(HDFS)、分布式运算(MapReduce)组成。
HIVE是一个SQL解析引擎,它将SQL语句转译成M/RJOB 然后再Hadoop执行,与传统数据库完全不同,只是采用了同样的sql界面。
2、hadoop基本操作
2.1 查看指定目录下内容
Hadoop dfs –ls[文件目录]
如:hadoop dfs –ls /user/war/wangkai.pt
2.2 打开某个已存在的文件
Hadoop dfs –cat [file_path]
如:hadoop dfs –cat /user/war/wangkai.pt/test.txt
2.3 删除某个文件
hadoop fs -rm hdfs://ns4/user/mart_vdp/app.db/app_vdp_jdb_jw_store_task_rules/store_task.txt
2.4 将本地文件存储至hadoop
Hadoop fs –put [本地地址]
3、hive基本操作
3.1 进入hive
登陆hadoop服务器后,输入 hive(这处理的有点慢,多等会)
显示成hive>
>
后,即表示进入到hive中
3.2 hive基本操作
3.2.1 建表
语句:
CREATE [EXTERNAL] TABLE table_name
(col_name data_rype,.....)
[PATTITIONED BY (col_name data_type)]
[ROW FORMAT DELIMITED
[FIELDS TERMINATED BY '/t' ]
[STORED AS TEXTFILE]
举例:
create table input_data_test #表名
( item_sku_id string , #字段名称 字段类型
provider_code string ,
delivery_center string ,
stock bigint )
COMMETN '注释:XXXXX' #表注释
PARTITIONED BY ("ACTIVE") #分区表字段(如果文件非常大的话,采用分区表可以快速过滤出按分区字段划分的数字)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t' #字段之间是按照什么分割开的,这个例子是中按照tab键分开,还可以使用其他字符,如|分开
STORED AS TEXTFILE; #用哪种方式存储数据
3.2.2 查看库
语句:show databases;
使用某一个库:use database;
3.2.3 查看表
语句:show tables
可以使用模糊查询:show tables '*TMP*'
查看表有哪些分区: show partitions table;
使用某一个表:use table;
查看表字段:desc table;
3.2.4删除表
Drop table table_name;
3.2.5增加字段:
alter table fdm_cep_ql_service_center_chain add columns (jd_account string);
3.2.6 导入数据
使用load命令将数据导入表中 load操作只是将数据复制/移动至Hive表对应的位置,不会对数据进行任何转换。
语句:
load data [local] inpath 'filepath' [overwrite] into table tablename [partition ]
举例:
load data local inpath '/python/app/task/data/gdm_m03_item_sku_da_06.txt' into table gdm.gdm_m03_item_sku_da;(不带分区)
load data local inpath '/python/app/task/data/no_commission_rules.txt' into table app.app_vdp_nojdb_jw_sku_commission_rules;(带分区)
注:就是普通的insert,只不过数据来源是通过inpath路径找到的,insert之前保证表已建完,并且格式于建表语句要求的格式一致(换行、分隔符等)
3.2.7 查询
1、where 语句
Where语句是个布尔表达式,例如:下面的查询语句只返回销售记录大于10,且归属地属于美国的销售代表。
Select * from sales where amount >10 and region =’US’
注:hive不支持where子句中的IN、EXIST或子查询。
2、基于partition的查询
一般select查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用partitioned by子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中他关心的那一部分。
Hive当前的是实现是。只有分区断言出现在离from子句最近的那个where子句中,才会取用分区剪枝。
例如,如果表app_vdp_base_jdbang_income_ma_sum使用date列分区,一下语句只会读取分区为‘2016-06-01’的数据。
Select *
from app_vdp_base_jdbang_income_ma_sum
where tx_dt>=’2016-06-01’ and tx_dt <=’2016-06-31’
3、limit查询
Limit可以限制查询的记录数,查询的结果是随机选择的。下边的查询语句从t1表中随机查询5条记录:
Select * from t1 limit 5;
如果需要查询top多少的数据,则需要使用下面的语句:
查询销售记录最大的5个销售代表:
Select * from sales order by amount desc limit 5;
3.2.8 修改数据
Hive不支持update数据。
同时,hive导入数据的时候不会自动去重。
3.2.9 删除数据
Hive不支持条件删除,只能删除整个表后再重新建。
3.2.10 结果导出
在hive中查询出表数据后,如果数据太多,不好看,可以将数据导出来,然后在本地使用UE等工具查看。此命令在在linux下执行
格式:hive –e ‘查询语句’ > 文件名.txt #将查询语句查询出来的结果导出到txt中
例如:
hive - e 'select * from app.app_vdp_jdbang_jwang_xiadan_detail;' > wangsha1.txt
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06