
SAS之大话PDV
之所以说是数据源,而非输入缓冲区的原因上一条推送已经说明,这里就不再啰嗦啦。
这里我们且将DATA步流程简单地分为从数据源读入到pdv和从pdv写入数据集。
IF语句 & WHERE语句
这两个语句均是用于条件选择,但二者作用时机却大有不同。简单来说,if语句作用于观测出PDV到生成数据集时;而where语句则作用于观测进入PDV之时。这也奠定了二者效率上的差别。由于where语句作用于观测进入PDV之时,SAS读入的观测已经过选择,读入观测数较少,所以在读入较大数据之时,where语句的优势就尤为明显了。
但又是因为where语句作用于观测进入PDV之时,也带来了一些限制,如:
当提交如上语句之时,SAS将会报错:
ERROR: 变量 x 不在文件“WORK.B”中。
而使用if语句则不会出现此ERROR。
对于这些选项的作用,相信大家也都有所了解;如不了解,那就得好好补补基础咯
言归正传,对于这些语句的作用时机,就不再一一演示,简单来说,rename、keep、drop语句用于PDV到生成数据集的过程中。而对于选项,则需看选项的位置:
对于上述代码,大家可自行敲击运行,就会发现在数据集b生成过程中出现NOTE: 变量 age 未初始化。 原因就在于当选项用于set语句时,作用时机为原始数据至PDV之间;而当选项用于data语句时,则作用于PDV至生成数据集之间。
当SASDATA步中使用SET语句、MERGE语句和UPDATE语句读入变量时(除赋值语句和input语句外),SAS将会自动retain,即由这些语句读入的变量将不会被置缺失。
不多说,上例子:
例1:merge
结果:
运行过程:
从a读入第1条观测,从b读入第1条观测,查看id(即by变量)是否匹配,若不匹配,则读入id较小的观测,若匹配则一起读入PDV。此例为匹配。
到达RUN语句,将PDV写入数据集
从a、b分别读入第2条观测,检查发现不匹配。检查id是否与PDV中相同,若是,则读入匹配的观测(即a中第二条观测),若都不同,则将较小的id观测读入。
达到run语句,OUTPUT;
读入a的第3条观测,b的第2条观测,检查发现不匹配。再检查id发现a中第3条与PDV中id匹配,将其写入。后output。
读入a的第4条观测,b的第2条观测,检查发现匹配,再检查发现与PDV中id不同;此时进入另一个by组,初始化DVP。将匹配的观测写入DVP。
读入a中第5条观测,b中第3条观测,发现id不匹配,再检查发现b中第3条观测id与PDV中id匹配,将其读入,后output。
读入a中第5条观测,b中第4条观测,发现id匹配并与PDV中id不同,初始化pdv,将两条观测整合写入PDV,后output。
由于a中观测已读完(EOF),读入b中第5条观测,发现与PDV中id不同,初始化PDV,读入b中第5条观测,output。注意此时由于没有匹配,且为新的by组,不存在retain的x变量,所以最后一条观测中x为空。
a、b数据集均到达EOF,程序运行结束,保存数据集。
例2:set
结果:
这时候大家可能会发现,第二条观测不是同一个by组吗?为什么第2条观测的x变量不是第一条中x的值呢?为什么没有retain?
然而,其实还是有retain的,只不过数据集中体现不出来,而结果为什么会是那样呢?这就涉及到PDV的又一个原则,当PDV从一个新的数据集中读入观测时,会将PDV置缺失。
若你想看出retain的效果呢,有个办法:
对于UPDATA等其他语句,就不再举例啦,有兴趣者可自行探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04