京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据驱动业务决策的5个步骤
想要改善你的决策过程?如今,如果你想保持市场竞争力,只靠直觉和本能已经不够了。大多数组织认识到数据应该是组织决策的核心。
凭借几乎所有业务领域的技术,你可以使用其生成的数据来确切了解组织中发生的情况,并通过测试不同的方案和成功使用信息来使你的业务更加灵活。
你不一定必须成为数据科学家才能获得回报。你可以采取一些简单的步骤,使业务决策更具数据驱动力。
数据本能:从数据驱动的决策中获得的收益
如今,世界各地的顶级公司都使用数据来决定他们的业务。他们在行业领先的原因是因为他们通过将重点转移到数据而不是依靠商业头脑比对手更有战略优势。
使用数据决策的公司排名比较靠前,而大多数基于直觉或经验(70%)的企业是落后者。换句话说,更多做出数据驱动决策的组织比那些由本能驱动决策的企业更加处于市场的前沿。
以下只是通过成为数据驱动型组织而获得的一些东西:
·利用数据的优势在具有前瞻性思维的公司中保持竞争力。
·数据驱动的公司更加以客户为中心,深入了解客户和旅程。
·具有成本效益-存储大量数据可能成本高昂,尤其是仅将其用于合规性时。将数据放在工作中,并将其用于组织的优势。
·检测新的或错过的机会,帮助组织发展和定期改进。
·更灵活,更好地应对市场/创新。
不要让数据把你带入歧途
不得不说,你掌握的大量数据不一定与你开展业务的方式相辅相成。数据与你可以从中吸取的洞察力一样有价值,获得大量不相关的信息很容易发现自己被误入歧途。
从中吸取真正价值的关键在于确定要使用的数据。你使用的指标(衡量的信息,如网页浏览量或转化次数)将决定数据驱动决策的成功率。你应该看的是那些对其增长至关重要的业务领域。
这些是你应该问的一些问题:
·数据来自哪里,是真正具有代表性吗?
·如果你根据数据作出假设,这些假设是否仍然会受到不同的结果的影响?
·自变量会改变结果吗?
·可以使用不同的分析方法吗?
如何实现更多的数据驱动的5个步骤
考虑到这一点,让我们变得更加数据驱动,我们应该怎样?
步骤1:策略
数据驱动的决策始于重要策略。这有助于通过删除对你的业务无效的所有数据来集中注意力。
首先,确定你的目标-数据可以为你做什么?也许你正在寻找新的潜在客户,或者你想知道哪些流程正在运作,哪些流程是不正常的。
看看你的业务目标,然后围绕它们制定一个策略-这样你就不会因为大数据提供的所有可能性而变得迷惑。
步骤2:确定关键区域
数据从各个方向流入组织,从客户交互到员工使用的机器。管理多种数据来源必不可少,并确定哪些领域将带来最大收益。什么领域是实现你的首要业务战略的关键?例如,这可能是财务或运营。
步骤3:数据定位
现在,你已经确定了哪些领域的业务将从分析和想要解决的问题中获益最多,现在是时候确定哪些数据集将回答所有这些问题。
这涉及到你已经拥有的数据,并找出哪些数据源提供最有价值的信息。这将有助于简化数据。请记住,当不同的部门使用单独的系统时,可能导致不准确的数据报告。最好的系统可以对来自不同来源的数据进行交叉分析。
根据你的业务目标定位数据将有助于降低数据存储的成本,更不用说确保你获得最有用的见解。
注意成本会让公司董事会感到满意,只关注你真正需要的数据就可。
步骤4:收集和分析数据
确定将管理数据的关键人物。这通常是部门负责人。也就是说,最有用的数据将在各级收集,并将来自外部和内部来源,因此你可以全面了解业务发生的情况。
为了有效地分析数据,你可能需要集成系统来连接所有不同的数据源。你需要的技能水平将根据需要分析的内容而有所不同。查询越复杂,你需要的专业技能越多。
另一方面,简单的分析可能只需要Excel的工作知识,例如。一些分析平台提供可访问性,以便每个人都可以访问数据,这有助于团结整个员工队伍,并为更多的组织提供服务。
数据越容易获得,人们越有可能从中获得洞察力。
步骤5:将洞察力转化为行动
你从数据中获取的见解的方式将决定您从中获得的收益多少。
有多种商业智能工具可以将复杂的数据集合在一起,并以一种使你的见解更容易被决策者消化的方式呈现。
当然,这不是关于呈现漂亮的图表,而是以可视化的方式更清晰地呈现出这些见解,使决策者更容易看到需要采取的行动,最终如何在业务中使用这些信息。
让基于数据的课程塑造你的业务
成为数据驱动型组织并不是一朝一夕能建成的,决定使用数据来推动业务决策。而不仅仅是选择最佳的分析工具,帮助你从数据中获得洞察,尽管它们有助于建立正确的技术架构。
这是关于重组组织的文化,以确保每个人都知道数据的价值,以及如何充分利用它。
变革必须来自组织高层,变革企业文化意味着在董事会上获得领导权。让决策者关注的最好办法是展示分析如何为组织带来价值。
当你开始将这些见解直接应用于业务时,在决策过程中使用它们,并将其嵌入到组织中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01