
一般在建立好Cox模型之后,需要对模型进行诊断。诊断内容包括模型的前提条件,诸如Cox模型的PH假定(比例风险假定),共线性假定等。本篇我们通过合实际例子讲解Cox模型诊断过程,实现软件R语言。
1.1 COX模型的诊断内容
Cox模型的诊断一般包括三方面的内容:
比例风险假定;
模型影响点(异常值)识别;
比例风险的对数值与协变量之间的非线性关系识别;
对上述三方面的诊断,常见的方法为残差法。
Schoenfeld残差用于检验比例风险假定;
Deviance残差用于影响点(异常值)识别;
Martingale残差用于非线性检验;
1.2 R中用于评估Cox模型的包
我们将会用到以下两个包:
survival #用于cox模型建立
survminer #用于cox模型诊断结果的可视化
安装包
install.packages(c("survival","survminer"))
加载包
library("survival")
library("survminer")
1.3 建立Cox模型
我们利用survial包中自带的肺癌数据“data(lung)”建立cox模型。
library("survival")
res.cox <- coxph(Surv(time, status) ~ age + sex +wt.loss, data =lung)#模型中有三个变量;
res.cox#显示模型结果
Call:
coxph(formula = Surv(time, status) ~ age + sex + wt.loss,data = lung)
coefexp(coef) se(coef) z p
age 0.02009 1.02029 0.00966 2.08 0.0377
sex -0.52103 0.59391 0.17435 -2.99 0.0028
wt.loss 0.00076 1.00076 0.00619 0.12 0.9024
Likelihood ratio test=14.7 on 3 df, p=0.00212
n= 214, number of events= 152
(14 observationsdeleted due to missingness)
1.4 模型诊断——PH假定
PH假定可通过假设检验和残差图检验。正常情况下,Schoenfeld残差应该与时间无关,如果残差与时间有相关趋势,则违反PH假设的证据。残差图上,横轴代表时间,如果残差均匀的分布则,表示残差与时间相互独立。
R语言survival包中的函数cox.zph()可以实现这一个检验过程。
test.ph <- cox.zph(res.cox)
test.ph
rhochisq p
age -0.0483 0.3780.538
sex 0.1265 2.3490.125
wt.loss 0.0126 0.0240.877
GLOBAL NA 2.8460.416
从上面的结果可以看出,三个变量的P值都大于0.05,说明每个变量均满足PH检验,而模型的整体检验P值0.416,模型整体满足PH检验。
在R语言 survminer中ggcoxzph( )函数可以画出Schoenfeld残差图。
ggcoxzph(test.ph)
上图中实线是拟合的样条平滑曲线,虚线表示拟合曲线上下2个单位的标准差。如果曲线偏离2个单位的标准差则表示不满足比例风险假定。从上图中可见,各协变量满足PH风险假设。
另一种检查比例风险假定的图形方法是绘制log(-log(S(t)))与t或log(t)是非平行,这个方法只能用于协变量是分类变量的情形。
如果违反比例风险假设可以通过以下方式解决:
模型中添加协变量与时间的交互相应;
分层分析;
至于如何实现,我们后期再做介绍。
我们可以通过绘制Deviance残差图或者dfbeta值实现上述诊断。在R语言survminer中ggcoxdiagnostics()函数可以画出Deviance残差图。
ggcoxdiagnostics(res.cox,type = "deviance",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
残差值均匀的分布在0上下,表明满足上述假定。
ggcoxdiagnostics(res.cox,type = "dfbeta",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
影响点的可能来源于数据录入错误,样本中的极值点、协变量不均衡,数据不足等。对本例,上图显示,将dfbeta值大小与回归系数比较表明,即使某些dfbeta值非常大,但它们不足以对模型系数的估计值产生影响。
1.6 模型诊断——非线性诊断
一般情况下,我们假设协变量与-log(s(t))之间是线性关系。通过绘制Martingale残差图可以实现模型协变量的非线性诊断。非线性诊断一般是针对模型中的连续型变量。
在R语言survminer中ggcoxfunctional()函数可以画出Martingale残差图。
ggcoxfunctional(Surv(time, status) ~ age + log(age) + sqrt(age),data = lung)
![]()
图中显示年龄局部有非线性趋势,但整体表现出线性趋势。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26