京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一般在建立好Cox模型之后,需要对模型进行诊断。诊断内容包括模型的前提条件,诸如Cox模型的PH假定(比例风险假定),共线性假定等。本篇我们通过合实际例子讲解Cox模型诊断过程,实现软件R语言。
1.1 COX模型的诊断内容
Cox模型的诊断一般包括三方面的内容:
比例风险假定;
模型影响点(异常值)识别;
比例风险的对数值与协变量之间的非线性关系识别;
对上述三方面的诊断,常见的方法为残差法。
Schoenfeld残差用于检验比例风险假定;
Deviance残差用于影响点(异常值)识别;
Martingale残差用于非线性检验;
1.2 R中用于评估Cox模型的包
我们将会用到以下两个包:
survival #用于cox模型建立
survminer #用于cox模型诊断结果的可视化
安装包
install.packages(c("survival","survminer"))
加载包
library("survival")
library("survminer")
1.3 建立Cox模型
我们利用survial包中自带的肺癌数据“data(lung)”建立cox模型。
library("survival")
res.cox <- coxph(Surv(time, status) ~ age + sex +wt.loss, data =lung)#模型中有三个变量;
res.cox#显示模型结果
Call:
coxph(formula = Surv(time, status) ~ age + sex + wt.loss,data = lung)
coefexp(coef) se(coef) z p
age 0.02009 1.02029 0.00966 2.08 0.0377
sex -0.52103 0.59391 0.17435 -2.99 0.0028
wt.loss 0.00076 1.00076 0.00619 0.12 0.9024
Likelihood ratio test=14.7 on 3 df, p=0.00212
n= 214, number of events= 152
(14 observationsdeleted due to missingness)
1.4 模型诊断——PH假定
PH假定可通过假设检验和残差图检验。正常情况下,Schoenfeld残差应该与时间无关,如果残差与时间有相关趋势,则违反PH假设的证据。残差图上,横轴代表时间,如果残差均匀的分布则,表示残差与时间相互独立。
R语言survival包中的函数cox.zph()可以实现这一个检验过程。
test.ph <- cox.zph(res.cox)
test.ph
rhochisq p
age -0.0483 0.3780.538
sex 0.1265 2.3490.125
wt.loss 0.0126 0.0240.877
GLOBAL NA 2.8460.416
从上面的结果可以看出,三个变量的P值都大于0.05,说明每个变量均满足PH检验,而模型的整体检验P值0.416,模型整体满足PH检验。
在R语言 survminer中ggcoxzph( )函数可以画出Schoenfeld残差图。
ggcoxzph(test.ph)
上图中实线是拟合的样条平滑曲线,虚线表示拟合曲线上下2个单位的标准差。如果曲线偏离2个单位的标准差则表示不满足比例风险假定。从上图中可见,各协变量满足PH风险假设。
另一种检查比例风险假定的图形方法是绘制log(-log(S(t)))与t或log(t)是非平行,这个方法只能用于协变量是分类变量的情形。
如果违反比例风险假设可以通过以下方式解决:
模型中添加协变量与时间的交互相应;
分层分析;
至于如何实现,我们后期再做介绍。
我们可以通过绘制Deviance残差图或者dfbeta值实现上述诊断。在R语言survminer中ggcoxdiagnostics()函数可以画出Deviance残差图。
ggcoxdiagnostics(res.cox,type = "deviance",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
残差值均匀的分布在0上下,表明满足上述假定。
ggcoxdiagnostics(res.cox,type = "dfbeta",
linear.predictions = FALSE,ggtheme = theme_bw())
![]()
影响点的可能来源于数据录入错误,样本中的极值点、协变量不均衡,数据不足等。对本例,上图显示,将dfbeta值大小与回归系数比较表明,即使某些dfbeta值非常大,但它们不足以对模型系数的估计值产生影响。
1.6 模型诊断——非线性诊断
一般情况下,我们假设协变量与-log(s(t))之间是线性关系。通过绘制Martingale残差图可以实现模型协变量的非线性诊断。非线性诊断一般是针对模型中的连续型变量。
在R语言survminer中ggcoxfunctional()函数可以画出Martingale残差图。
ggcoxfunctional(Surv(time, status) ~ age + log(age) + sqrt(age),data = lung)
![]()
图中显示年龄局部有非线性趋势,但整体表现出线性趋势。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08