京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之grep函数和正则通配符查
首先,grep函数可以像数据库查询一样对向量中的具有特定条件的元素进行查询!
其次,介绍几种R语言中的正则通配符:
(1)“^”匹配一个字符串的开始,比如sub("^a","",c("abcd","dcba")),表示将开头为a的字符串。如果要将开头的一个字符串替换,简单地写成“^ab”就行。
(2)“$”匹配一个字符串的结尾,比如sub("a$","",c("abcd","dcba"))表示将以a结尾的字符串。
(3)"."表示除了换行符以外的任一字符,比如sub("a.c","",c("abcd","sdacd"))。
(4)“*”表示将其前的字符进行0个或多个的匹配,比如sub("a*b","",c("aabcd","dcaaaba"))。
(5)“?”匹配0或1个正好在它之前的那个字符
(6)“+”匹配1或多个正好在它之前的那个字符。
(7)“.*”可以匹配任意字符,比如sub("a.*e","",c("abcde","edcba"))。
(8)“|”表示逻辑的或,比如sub("ab|ba","",c("abcd","dcba")),可以替换ab或者ba。
(9)“^”还可以表示逻辑的补集,需要写在“[]”中,比如sub("[^ab]","",c("abcd","dcba")),由于sub只替换搜寻到的第一个,因此这个例子中用gsub效果更好。
(10)“[]”还可以用来匹配多个字符,如果不使用任何分隔符号,则搜寻这个集合,比如在sub("[ab]","",c("abcd","dcba"))中,和"a|b"效果一样。
(11)“[-]”的形式可以匹配一个范围,比如sub("[a-c]","",c("abcde","edcba"))匹配从a到c的字符,sub("[1-9]","",c("ab001","001ab"))匹配从1到9的数字。
最后需要提一下的是“贪婪”和“懒惰”的匹配规则。默认情况下是匹配尽可能多的字符,是为贪婪匹配,比如sub("a.*b","",c("aabab","eabbe")),默认匹配最长的a开头b结尾的字串,也就是整个字符串。如果要进行懒惰匹配,也就是匹配最短的字串,只需要在后面加个“?”,比如sub("a.*?b","",c("aabab","eabbe")),就会匹配最开始找到的最短的a开头b结尾的字串。数据分析师培训
最后,举例说明:
例:
> Num <- c(310,456,311,431,421,435,534,312,313,320,321,322,323,314,324,317,3231)
> ipn<-grep("^3",Num,value=T)##开头为3的数字##
> ipn
[1] "310" "311" "312" "313" "320" "321" "322" "323" "314"
[10] "324" "317" "3231"
> ipn<-grep("^31",Num,value=T)##开头为31的数字#
> ipn
[1] "310" "311" "312" "313" "314" "317"
> ipn<-grep("4$",Num,value=T)##以4结尾的的数字#
> ipn
[1] "534" "314" "324"
> ipn<-grep("3.2",Num,value=T)##所有以3开头,以2结尾的数字##
> ipn
[1] "312" "322"
> ipn<-grep("*31",Num,value=T)##所有含‘31’的数字#
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("3*1",Num,value=T)##所有开头为3或者末位为1的数字##
> ipn
[1] "310" "311" "431" "421" "312" "313" "321" "314" "317"
[10] "3231"
> ipn<-grep("?31",Num,value=T)##所有含‘31’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("+31",Num,value=T)##所有含‘31’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("3.*1",Num,value=T)##所有含‘3'和'1’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "321" "314" "317" "3231"
> ipn<-grep("3|1",Num,value=T)##所有含‘3'或'1’的数字##
> ipn
[1] "310" "311" "431" "421" "435" "534" "312" "313" "320"
[10] "321" "322" "323" "314" "324" "317" "3231"
> ipn<-grep("[1]",Num,value=T)##所有含‘1’的数字##
> ipn
[1] "310" "311" "431" "421" "312" "313" "321" "314" "317"
[10] "3231"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27