
R语言之grep函数和正则通配符查
首先,grep函数可以像数据库查询一样对向量中的具有特定条件的元素进行查询!
其次,介绍几种R语言中的正则通配符:
(1)“^”匹配一个字符串的开始,比如sub("^a","",c("abcd","dcba")),表示将开头为a的字符串。如果要将开头的一个字符串替换,简单地写成“^ab”就行。
(2)“$”匹配一个字符串的结尾,比如sub("a$","",c("abcd","dcba"))表示将以a结尾的字符串。
(3)"."表示除了换行符以外的任一字符,比如sub("a.c","",c("abcd","sdacd"))。
(4)“*”表示将其前的字符进行0个或多个的匹配,比如sub("a*b","",c("aabcd","dcaaaba"))。
(5)“?”匹配0或1个正好在它之前的那个字符
(6)“+”匹配1或多个正好在它之前的那个字符。
(7)“.*”可以匹配任意字符,比如sub("a.*e","",c("abcde","edcba"))。
(8)“|”表示逻辑的或,比如sub("ab|ba","",c("abcd","dcba")),可以替换ab或者ba。
(9)“^”还可以表示逻辑的补集,需要写在“[]”中,比如sub("[^ab]","",c("abcd","dcba")),由于sub只替换搜寻到的第一个,因此这个例子中用gsub效果更好。
(10)“[]”还可以用来匹配多个字符,如果不使用任何分隔符号,则搜寻这个集合,比如在sub("[ab]","",c("abcd","dcba"))中,和"a|b"效果一样。
(11)“[-]”的形式可以匹配一个范围,比如sub("[a-c]","",c("abcde","edcba"))匹配从a到c的字符,sub("[1-9]","",c("ab001","001ab"))匹配从1到9的数字。
最后需要提一下的是“贪婪”和“懒惰”的匹配规则。默认情况下是匹配尽可能多的字符,是为贪婪匹配,比如sub("a.*b","",c("aabab","eabbe")),默认匹配最长的a开头b结尾的字串,也就是整个字符串。如果要进行懒惰匹配,也就是匹配最短的字串,只需要在后面加个“?”,比如sub("a.*?b","",c("aabab","eabbe")),就会匹配最开始找到的最短的a开头b结尾的字串。数据分析师培训
最后,举例说明:
例:
> Num <- c(310,456,311,431,421,435,534,312,313,320,321,322,323,314,324,317,3231)
> ipn<-grep("^3",Num,value=T)##开头为3的数字##
> ipn
[1] "310" "311" "312" "313" "320" "321" "322" "323" "314"
[10] "324" "317" "3231"
> ipn<-grep("^31",Num,value=T)##开头为31的数字#
> ipn
[1] "310" "311" "312" "313" "314" "317"
> ipn<-grep("4$",Num,value=T)##以4结尾的的数字#
> ipn
[1] "534" "314" "324"
> ipn<-grep("3.2",Num,value=T)##所有以3开头,以2结尾的数字##
> ipn
[1] "312" "322"
> ipn<-grep("*31",Num,value=T)##所有含‘31’的数字#
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("3*1",Num,value=T)##所有开头为3或者末位为1的数字##
> ipn
[1] "310" "311" "431" "421" "312" "313" "321" "314" "317"
[10] "3231"
> ipn<-grep("?31",Num,value=T)##所有含‘31’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("+31",Num,value=T)##所有含‘31’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "314" "317" "3231"
> ipn<-grep("3.*1",Num,value=T)##所有含‘3'和'1’的数字##
> ipn
[1] "310" "311" "431" "312" "313" "321" "314" "317" "3231"
> ipn<-grep("3|1",Num,value=T)##所有含‘3'或'1’的数字##
> ipn
[1] "310" "311" "431" "421" "435" "534" "312" "313" "320"
[10] "321" "322" "323" "314" "324" "317" "3231"
> ipn<-grep("[1]",Num,value=T)##所有含‘1’的数字##
> ipn
[1] "310" "311" "431" "421" "312" "313" "321" "314" "317"
[10] "3231"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01