京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与BI的建设方法 | 平台建设第一步,做好需求调研
随着数据时代的到来,大数据技术吸引了越来越多的关注,深度数据分析已成为企业提升效能、洞察先机必备的重要能力。而如何有效实施大数据项目,充分发掘数据中蕴含的价值,则成为越来越多企业开始关注的问题。
然而很多企业在大数据项目开展之初,就在需求调研环节遇到了意料之外的困难。大数据项目的成功落地,是建立在完善的需求调研基础之上的;毕竟对于用户需求的有效满足,是项目实施的根本目的。而对于很多企业来说,在部署大数据项目的过程中,得到的结果却总是和自身的需求南辕北辙,导致项目失败。究竟是什么原因导致了这种情况的发生?
需求去哪儿了?作为导致项目失败的重要原因之一,对需求理解不一致的情况经常出现在项目部署的过程中——客户、销售、设计、开发等各方对于需求的表述和理解,很可能千差万别。著名的“需求秋千理论”形象地阐释了这个过程:
需求秋千理论
为什么会有这种不一致的情况出现?一般情况下,需求调研作为项目部署的第一环节,是之后开发、实施、维护的基础所在,而一旦客户与服务提供者在需求调研阶段就产生了沟通错位,很可能会导致之后的一系列环节出现偏差“追尾”,最终导致结果与预期相差万里。
在大多数项目实施流程中,对客户需求的获取是由企业服务提供商与客户通过反复沟通交流完成。这一步骤看似简单,但由于客户可能对大数据技术具体实现细节关注较少,表述较为简单;服务提供商缺乏沟通技巧、对需求理解认知出现偏差等原因,容易导致需求调研过程困难且易出错,直接影响到项目的实施成果。
需求调研:找回丢失的需求
由于需求引导与打造共识环节的缺失,导致需求认知出现的问题,必须在项目部署的初期得到妥善解决,通过完善的需求调研为之后的开发与实施打下坚实的基础。而对于需求的引导,可以参考“需求引导六步法”:
【前期准备】充分了解客户业务状况及基本需求,准备访谈提纲、对象、设计访谈环节等,通过前期准备保障需求引导过程的可操作性及高效性。
【访谈前导】浅谈调研目标、范围、时长及保密事宜,保障过程双方频道统一。
【分析业务】通过聚焦客户关注点,逐步引导客户在问题情境中阐明改善期望,分析当前业务举措。
【挖掘需求】根据业务表象深挖业务难点及痛点,探讨问题的根本原因。
【达成共识】根据实际业务场景与专业理论知识及行业案例相结合,提出合理化的建设方案,在双方充分沟通够并达成一致。
【赢得支持】与高层统一建设目标,逐级分解目标,落实行动计划,赢得全员支持。
通过这些步骤,能够将客户与服务提供商之间对于客户需求的认知的误差降到最低,从而在最大程度上确保项目初期不会因为需求理解不一致产生方向偏差。成功的企业是如何完成需求调研的?
经过多年的发展,大数据行业已经逐渐由概念走向实战,然而大多数大数据项目的发展依然进展缓慢。相关数据显示,美国平均100个大数据项目只有40个左右可以成功交付,无形中造成一种巨大的消耗和折损。不过令人意外的是,大数据技术领导厂商永洪科技旗下产品永洪一站式大数据分析平台部署成功率高达90%-95%,超过行业一倍的交付成功率引人注目。这与永洪在精准定位客户需求方面的做法不无关系:
在团队建设方面,永洪拥有上百人的专门服务团队,团队成员具备优秀的专业背景和丰富的实践经验,累计支持了超过2000家企业,拥有20多个行业的服务经验,已经达到了世界级的服务标准,能够快速精准了解客户需求,快速响应客户需求。在需求识别方面,永洪通过客户座谈、详细问卷、查阅资料、走访等方式,对客户特点、企业资源、项目目标、工期及预算等需求做到初步的了解和确定;同时深入学习了解客户公司所处的行业、公司概况,清楚掌握行业及公司发展特点、业务流程、数据分析模式等业务与技术内容,确保对客户需求理解的准确性和一致性。
在客户沟通层面,永洪选择在保护客户商业机密的前提下,从领导层的宏观需求到技术层的细节需求进行多层次的分析,了解客户真实想法,收集汇总所有意见,避免出现表达与沟通导致的偏差;同时,尽量接触到系统覆盖的所有部门需求,着重听取业务部门意见,形成对客户需求的立体化、多角度理解,防止出现沟通死角。
在确认需求层面,永洪对客户业务流程进行深入了解之后,从大数据业务流程介绍,重点需求分析入手,与客户一同深入分析项目的实现逻辑,分析解决方案和协商分歧,帮助客户充分了解项目实施过程的每一环节,尽可能减少信息不对称性所引起的矛盾,协助客户进一步明确核心需求,并最终实现项目质量、精度、细节等的确认和共识。
这些特质在永洪的客户案例中有鲜明的体现。永洪的某客户企业是国内知名汽车制造厂商,项目初期客户提出“各系统数据独立,需要形成整合在同一数据平台进行统一管理”的需求。针对该需求在进行简短的沟通后,了解到客户对于BI的理解不是很清晰,并且对自身的需求也并非特别明确。永洪团队按照需求引导六步法对客户进行了深层次调研。了解到客户工作开展的根本难点在于:
1. 数据量大(百亿级数据量)、数据源多(多套业务系统、不同的数据库类型)、规则不统一,在导入BI系统之前需要从各系统导出,再手工汇总到汇报材料,统计效率低、易出错,决策者看到的数据有延迟现象。
2. 分析需求不能及时呈现。在有新的分析需求时,需要先通过IT部门对接,进行需求传递,反复碰撞、建模,通过长时间建设后才能实现该分析需求。
3. 业务系统的OLTP架构和办公软件通用性设计都无法满足现有的业务分析需求,尤其是对历史数据的追溯和分析等。
基于以上几点,通过反复调研沟通,在了解到客户的根本需求的基础上,永洪针对性地完成了项目体系的搭建:
1. 搭建hadoop分布式数据管理体系,通过ETL定时自动汇总到数仓中,建立历史数据存储机制,进行数据源统一管理。
2. 按业务分析主题方式进行业务建模,能够快速输出现有的分析需求报告,同时业务人员可通过永洪产品进行自助式查询和分析,业务分析需求实现敏捷化。
最终将该需求及解决方案提交给客户高层确认时,得到了客户方的认可,并已经实施上线。
结语
需求调研是大数据项目开发与落地的基础,永洪正是在夯实这一基础之上,才实现了超出行业平均值一倍的交付成功率,打造出覆盖金融、制造、电信、医疗、政府、咨询、互联网、通讯、能源等领域的一系列优秀需求解决方案,也成为大数据技术在各行各业的普及推广与项目落地的优秀范例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28