
R语言:数据规范化、归一化
笔者寄语:规范化主要是因为数据受着单位的影响较大,需要进行量纲化。大致有:最小-最大规范化、均值标准化、小数定标规范化
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。
1、最小-最大规范化——标准化
也叫离差标准化,是对原始数据的线性变换,将数据映射到[0,1]之间,与功效系数法相同。
标准化 x-min(x) / max(x)-min(x)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#最小-最大规范化
b1=(data[,1]-min(data[,1]))/(max(data[,1])-min(data[,1]))
b2=(data[,2]-min(data[,2]))/(max(data[,2])-min(data[,2]))
b3=(data[,3]-min(data[,3]))/(max(data[,3])-min(data[,3]))
b4=(data[,4]-min(data[,4]))/(max(data[,4])-min(data[,4]))
data_scatter=cbind(b1,b2,b3,b4)
2、均值标准化法——正态化
正态标准差标准化、零均值规范化等方法,经过处理的数据均值为0,标准差为1。公式
为:
x*=(x-均值)/标准差
因为均值受离群值影响较大,也可以将均值替换成变量的中位数。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#零-均值规范化
data_zscore=scale(data)
3、小数定标规范化
移动变量的小数点位置来将变量映射到[-1,1]
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#小数定标规范化
i1=ceiling(log(max(abs(data[,1])),10))#小数定标的指数
c1=data[,1]/10^i1
i2=ceiling(log(max(abs(data[,2])),10))
c2=data[,2]/10^i2
i3=ceiling(log(max(abs(data[,3])),10))
c3=data[,3]/10^i3
i4=ceiling(log(max(abs(data[,4])),10))
c4=data[,4]/10^i4
data_dot=cbind(c1,c2,c3,c4)
#打印结果
options(digits = 4)#控制输出结果的有效位数
data_dot
代码中,log(x,10)是ln(x)一样;
options可以控制保留四位数小数
4、还原标准化的方法
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
preds=norm.data*sd(data)+mean(data)#还原标准化的数据
5、R语言中的scale函数
scale方法中的两个参数center和scale的解释:
1.center和scale默认为真,即T或者TRUE
2.center为真表示数据中心化
3.scale为真表示数据标准化
中心化=源数据-均值
标准化==中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集
的均值再除以数据集的标准差。
例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集
为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-
0.535,0,1.604,0
那么以下几种情况是啥意思:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
scale(x)=scale(x,center=T,scale=T),默认设置
scale(x,center=F,scale=T)代表不进行中心化,直接做标准化;
scale(x,center=T,scale=F)代表中心化
scale(x,center=F,scale=F)代表什么不做,是原来的数据列。
那么与apply族联用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01