京公网安备 11010802034615号
经营许可证编号:京B2-20210330
t检验及其SPSS运用
今天我们来介绍假设检验中一个极其常用的方法——t检验。我们将分为两部分介绍这一统计学界的“明星”方法,今天的推送中主要介绍单样本t检验,接下来将会介绍配对样本t检验和独立样本t检验及其方差齐性检验。
为了大家能在自己的研究中更好地运用这些知识,我们会淡化统计学原理的介绍,而主要讲解具体操作过程以及软件应用,本篇以SPSS软件为例来介绍t检验的几种常用方法。
一、概述
在统计学历史上,1908年是一个值得被铭记的年份。这一年,英国统计学家Gosset在当时赫赫有名的《生物统计》杂志上发表了《均值的概然误差》这篇具有划时代意义的文章。文中,Gosset对t分布进行了详细的介绍。
这篇文章之所以被视为统计学发展史上的一座里程碑,就在于它使得人们仅仅使用小样本(通常<30)就可以进行统计推断。在t分布被发现之前,以Pearson为代表的统计学家们往往需要收集足够大的样本数据以准确描述样本的特征(主要是4个分布参数)。
关于t分布的名字,还有一段故事。当时,年轻的Gosset就职于Guiness酿酒公司。由于公司的一项政策不允许员工发表论文,Gosset就常常以“student(学生)”为笔名发表文章。因此,他发现的这一分布被称为“t分布”或“学生t分布”。
t检验主要用来比较两个样本的均数是否有明显差异。为了更加直观地解释t检验的用途,我们列出了一些可以使用t检验的场景:
1.某班学生成绩是否比其他班成绩差?
2.近十年中国男性平均身高是否比过去高?
3.孪生兄弟的出生体重是否和出生顺序有关?
4.两种实验用药的治疗效果是否有差异?
……
二、t检验使用条件
t检验的使用有严格条件。如果随意使用t检验,往往会出现差错。在研究中,不少文章都有滥用t检验的现象,因此我们在进行t检验之前应考虑好这些条件。
使用t检验需要满足这3个条件:
1.随机样本;
2.来自正态分布总体;
3.均数比较时需要两总体方差相等。
我们在这里介绍正态性检验SPSS软件的一种实现方法。
1.在SPSS中,将要检验的数据如下图整理好(注意要设置“成绩”“班级”两个变量)。本例中,我们以1班、2班学生的成绩为例。
2.选择“分析”—“统计描述”—“探索”
3.按如下方式操作,将分组变量放入“因子列表”中,并在“绘制”对话框中勾选“带检验的正态图”,并确定。
4.在结果窗口中,观察显著性结果,若大于0.05则服从正态分布。本例两班都服从正态分布。
三、单样本t检验
“某班学生成绩是否比其他班成绩差?”“近十年中国男性平均身高是否比过去高?”“食堂的菜量是否比原来少?”这些问题都可以使用单样本t检验来操作。
单样本t检验实际是推断某一样本来自的总体均数是否与已知的某一总体均数有差别。零假设为H0:两均数相等。对立假设可根据具体情况设立双侧(两均数不等)或单侧(某一均数大于另一个)两种。
接下来我们用上文中一班成绩为例来演示如何在SPSS上操作。
已知该校该年级学生成绩均分为86.3分,我们计算一班这18名学生平均成绩83.7分,标准差7.1,那么是否能说一班学生(一班不止18个学生)的成绩低于年级平均成绩呢?
1.选择“分析”—“比较均值”—“单样本t检验”。
2.将数据放入“检验变量”栏中,在检验值中输出总体均数,确定。
3.结果显示,双侧检验p值大于0.05,则接受H0,即一班的成绩与年级平均成绩没有显著差别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01