
SPSS分析技术:T检验实例分析
用软件分析之前,得很清楚什么是T检验?用来做什么?回顾T检验理论基础:
抽样分布:t分布;
均值差异性的检验方法:Z检验和T检验综述;
简单总结:要证明两列正态分布的高测度数据(定距数据和高测度定序数据)是否存在差异,可以通过验证它们的均值差异性来达到目的,可以使用T检验和方差分析。T检验适用于单因素双水平,方差分析适用于多因素多水平。
根据数据序列的特点,T检验可以分为四种类型:单样本T检验、配对样本T检验、独立样本等方差T检验和独立样本异方差T检验。在具体应用中,应根据数据序列的特点选择相应的检验方法。如果两列数据之间具有一一对应关系,这种数据称为配对样本,例如同一年级学生的两次考试。如果两列数据各自为一个集合,两个集合内的数据没有对应关系,甚至个数都不相等,这种数据称为独立样本。对于配对样本,可以直接进行T检验;对于独立样本,则需要先检验两列数据的方差是否齐性,如果方差齐性,则使用独立样本等方差检验,否则要使用独立样本异方差检验。
SPSS的T检验分析步骤
检验数据正态性;选择【分析】-【非参数检验】-【旧对话框】-【1样本K-S】命令,检验数据的正态性。
如果是正态数据,可以进行T检验;根据不同数据类型选择不同T检验方式。选择【分析】-【比较平均值】-【单样本T检验】(包括配对样本T检验、独立样本T检验)。
输出结果解读;根据结果输出的检验概率,判断两样本是否存在显著性差异;或判断与某一个具体的常数是否有显著性差异。
案例分析
现有一份《某大学学生成绩》的数据,需要分析两个问题:1、分析变量语文、数学、外语、历史成绩是否存在显著性差异;2、分析男生和女生的数学成绩是否存在显著性差异。
1、分析变量语文、数学、外语、历史成绩是否存在显著性差异;
首先,分析语文、数学、英语和历史成绩的分布形态,结果如下:
从检验结果可知,语文、数学和英语成绩服从正态分布,而历史成绩不符合正态分布。所以对语文、数学和英语成绩进行配对样本T检验,检验它们是否有显著性差异。
第二步,由于语文、数学和英语成绩是根据学生性别一一对应的,所以使用配对样本T检验进行分析。选择菜单【分析】-【比较平均值】-【配对样本T检验】,将语文、数学和英语成绩选为分析变量,得到以下结果:
从检验结果看,语文成绩和数学成绩显著不同,语文成绩与英语成绩也有显著性差异。
2、分析男生和女生的数学成绩是否存在显著性差异。
由于男生的数学成绩与女生的数学成绩属于两个独立样本,所以需要先检查男生与女生分组后的数学成绩的方差是否齐性。
第一步,选择【分析】-【比较平均值】-【独立样本T检验】,将数学成绩选为检验变量,将性别选为分组变量;
第二步,点击【确定】,输出结果;
从结果来看,在Levene方差测试中,显著性为0.581,大于0.05,所以男生和女生的数学成绩是方差齐性的,所以看第一行,T检验的显著性为0.511,大于0.05,表明男生与女生的数学成绩没有显著性差异。如果在Levene方差测试中,显著性结果小于0.05,则需要看第二行的T检验结果。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29