
大数据让智慧城市如虎添翼
随着中国城市化进程的推进,城市病越来越为大家所诟病和抱怨。拥堵的交通,厚重的雾霾,以及城市摊大饼现象使得资源难以承载,这些都让城市居民苦不堪言。移动互联网时代到来之后,大数据进入医疗、环保、交通等诸多领域,成为智慧城市发展的助推器。在移动互联网与大数据紧密结合的时代,城市病能否破解?
大数据应用于智慧城市发展
“智慧医疗是大数据服务于城市智慧发展的重要一点。北京大学人民医院利用大数据分析,协助医生对所有病历进行分析,可以实现更好更快捷有效的服务。”IBM大中华区智慧城市北方区总经理谷冰谈到,“大数据在环保领域也可以有很好的应用。如果把一些周围污染源的数据、风向的数据都集中在系统中可以搭建出一个模型,预测2—3天后的PM2.5值,可以应用到智慧城市的环保环节,帮助政府、个人进行更好的环保气象管理及出行管理。”
“大数据在首尔这座城市有很多具体应用。比如,我们利用智能手机,分析了30亿条通话收发信息和短信信息设计了9条公交夜班车线路。另外,首尔市民对出租车空车行驶导致能源消耗、交通拥堵十分不满,于是我们利用大数据分析出了20个坐出租车人群最多的地区,统计出来以后自动给出租车司机发送一个信息,前面左转可能等待出租车的顾客更多。我们给手机用户也发送短信,你往哪个方向遇到空出租车的可能性更大。如果减少空车率10%,就可以节省很多费用,也可以很大程度上减少交通压力。所以大数据是城市重要的行政管理手段。”韩国首尔政府信息企业团团长金景瑞介绍。
北京市在数据收集和融合方面也做了很多基础性工作。“截至2012年,北京市主要业务信息化覆盖率达到96.34%,全市各个部门建设数据库311个,主题共享库60个,已经开始通过首都之窗政府网站向社会提供数据服务。北京做了人口、法人、空间地理、宏观经济四大基础数据库的建设,也在尝试四库的融合。”北京信息化专家委员会秘书长彭凯说。
大数据应用仍面临重重阻碍
“技术已经准备好,不仅仅是大数据分析,还有前端的感应线圈,包括现有的流式数据。”谷冰指出,然而大数据在智慧城市发展中的应用仍面临重重阻碍。
首先是大数据时代的隐私权问题。“比如电信运营商所掌握的手机用户基站登记信号,曾遭到网民一片骂声,认为是个人隐私泄漏了。实际上政府不是要掌握个人详细的数据,而是掌握整个城市人群的上下班和日常生活、休息娱乐,整个交通出行规律,把个人隐私信息滤出以后,对其他的信息进行分析,不同交通工具的出行规律,从而描绘出一张整座城市的动态量图。根据出行规律深入分析找出不同时间段拥堵的原因,提出疏导措施。”彭凯说。
其次是庞大的数据量缺乏以应用需求为导向的收集、分析。“各个政府部门在执行自己的行政职能过程中积累了大量数据。数据分析如果没有明确的需求,无论多么大的数据、多么好的技术都是白费的。”LGCNS中国数字市场事业部部长张勇虎说。
“现在为了解决一项业务应用,比如解决交通的问题,就需要把和交通相关的数据收集起来,围绕应用方案做工作。”彭凯说。
再者,大数据理念能不能为决策者所接受也是一个问题。“在大数据应用方面,北京市在技术上已经做好了应用的准备。但实际上现在关键的问题是各级政府领导、政府部门领导能不能运用大数据的理念分析解决本部门、本行业当中存在的重大社会管理和服务问题。有再好的金刚钻,不去揽自己的瓷器活,仍然解决不了社会非常关注的紧迫问题。”彭凯说。
多部门多方位消除阻碍
大数据真正助力智慧城市发展需要消除重重阻碍。首先,在移动互联网或者新电商时代隐私应该被重新定义。“隐私使用的法制问题应该被重新定义,包括互联网犯罪、互联网诈骗等等,从技术角度来讲,在新型的社会很难有隐私而言。另一方面,作为一个普通公民可能更关心隐私是否会导致损失和伤害。如何重新定义隐私?如何重新界定互联网上的犯罪行为?这是一个新的课题。想通过封闭的方法,利用各种各样的安全技术保护所谓的隐私信息,现在看来不太靠谱。”SAP城市创新首席科学家王斌说。
促进各行业、多元化数据交互融合也是重要的方面。“过去考虑问题往往站在局部,不能站在整体、全局考虑。大数据时代有待于跨领域多元数据的融合,需要成体系、立体、矩阵式的思维来谋划。智慧城市发展的大数据应用分析也一定是各个领域多元数据交互融合的结果。”彭凯说。
在数据技术完备的情况下,体制机制的调整和多部门的联动十分重要。例如北京的交通工作由交通委、北京市公安交通管理局、北京公交总公司、轨道交通公司共同管理,并不是由一个部门全部制定和规划的。要想通过大数据技术解决“九龙治水”的北京交通问题,彭凯认为“北京交通委要统筹,站在更高层面规划,行业治理并不能像韩国首尔市政府那样直接操作,需要制定政策,规范行业的管理。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05