京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让智慧城市如虎添翼
随着中国城市化进程的推进,城市病越来越为大家所诟病和抱怨。拥堵的交通,厚重的雾霾,以及城市摊大饼现象使得资源难以承载,这些都让城市居民苦不堪言。移动互联网时代到来之后,大数据进入医疗、环保、交通等诸多领域,成为智慧城市发展的助推器。在移动互联网与大数据紧密结合的时代,城市病能否破解?
大数据应用于智慧城市发展
“智慧医疗是大数据服务于城市智慧发展的重要一点。北京大学人民医院利用大数据分析,协助医生对所有病历进行分析,可以实现更好更快捷有效的服务。”IBM大中华区智慧城市北方区总经理谷冰谈到,“大数据在环保领域也可以有很好的应用。如果把一些周围污染源的数据、风向的数据都集中在系统中可以搭建出一个模型,预测2—3天后的PM2.5值,可以应用到智慧城市的环保环节,帮助政府、个人进行更好的环保气象管理及出行管理。”
“大数据在首尔这座城市有很多具体应用。比如,我们利用智能手机,分析了30亿条通话收发信息和短信信息设计了9条公交夜班车线路。另外,首尔市民对出租车空车行驶导致能源消耗、交通拥堵十分不满,于是我们利用大数据分析出了20个坐出租车人群最多的地区,统计出来以后自动给出租车司机发送一个信息,前面左转可能等待出租车的顾客更多。我们给手机用户也发送短信,你往哪个方向遇到空出租车的可能性更大。如果减少空车率10%,就可以节省很多费用,也可以很大程度上减少交通压力。所以大数据是城市重要的行政管理手段。”韩国首尔政府信息企业团团长金景瑞介绍。
北京市在数据收集和融合方面也做了很多基础性工作。“截至2012年,北京市主要业务信息化覆盖率达到96.34%,全市各个部门建设数据库311个,主题共享库60个,已经开始通过首都之窗政府网站向社会提供数据服务。北京做了人口、法人、空间地理、宏观经济四大基础数据库的建设,也在尝试四库的融合。”北京信息化专家委员会秘书长彭凯说。
大数据应用仍面临重重阻碍
“技术已经准备好,不仅仅是大数据分析,还有前端的感应线圈,包括现有的流式数据。”谷冰指出,然而大数据在智慧城市发展中的应用仍面临重重阻碍。
首先是大数据时代的隐私权问题。“比如电信运营商所掌握的手机用户基站登记信号,曾遭到网民一片骂声,认为是个人隐私泄漏了。实际上政府不是要掌握个人详细的数据,而是掌握整个城市人群的上下班和日常生活、休息娱乐,整个交通出行规律,把个人隐私信息滤出以后,对其他的信息进行分析,不同交通工具的出行规律,从而描绘出一张整座城市的动态量图。根据出行规律深入分析找出不同时间段拥堵的原因,提出疏导措施。”彭凯说。
其次是庞大的数据量缺乏以应用需求为导向的收集、分析。“各个政府部门在执行自己的行政职能过程中积累了大量数据。数据分析如果没有明确的需求,无论多么大的数据、多么好的技术都是白费的。”LGCNS中国数字市场事业部部长张勇虎说。
“现在为了解决一项业务应用,比如解决交通的问题,就需要把和交通相关的数据收集起来,围绕应用方案做工作。”彭凯说。
再者,大数据理念能不能为决策者所接受也是一个问题。“在大数据应用方面,北京市在技术上已经做好了应用的准备。但实际上现在关键的问题是各级政府领导、政府部门领导能不能运用大数据的理念分析解决本部门、本行业当中存在的重大社会管理和服务问题。有再好的金刚钻,不去揽自己的瓷器活,仍然解决不了社会非常关注的紧迫问题。”彭凯说。
多部门多方位消除阻碍
大数据真正助力智慧城市发展需要消除重重阻碍。首先,在移动互联网或者新电商时代隐私应该被重新定义。“隐私使用的法制问题应该被重新定义,包括互联网犯罪、互联网诈骗等等,从技术角度来讲,在新型的社会很难有隐私而言。另一方面,作为一个普通公民可能更关心隐私是否会导致损失和伤害。如何重新定义隐私?如何重新界定互联网上的犯罪行为?这是一个新的课题。想通过封闭的方法,利用各种各样的安全技术保护所谓的隐私信息,现在看来不太靠谱。”SAP城市创新首席科学家王斌说。
促进各行业、多元化数据交互融合也是重要的方面。“过去考虑问题往往站在局部,不能站在整体、全局考虑。大数据时代有待于跨领域多元数据的融合,需要成体系、立体、矩阵式的思维来谋划。智慧城市发展的大数据应用分析也一定是各个领域多元数据交互融合的结果。”彭凯说。
在数据技术完备的情况下,体制机制的调整和多部门的联动十分重要。例如北京的交通工作由交通委、北京市公安交通管理局、北京公交总公司、轨道交通公司共同管理,并不是由一个部门全部制定和规划的。要想通过大数据技术解决“九龙治水”的北京交通问题,彭凯认为“北京交通委要统筹,站在更高层面规划,行业治理并不能像韩国首尔市政府那样直接操作,需要制定政策,规范行业的管理。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03