
Python动态类型
动态类型(dynamic typing)是Python另一个重要的核心概念。我们之前说过,Python的变量(variable)不需要声明,而在赋值时,变量可以重新赋值为任意值。这些都与动态类型的概念相关。
动态类型
在我们接触的对象中,有一类特殊的对象,是用于存储数据的。常见的该类对象包括各种数字,字符串,表,词典。在C语言中,我们称这样一些数据结构为变量。而在Python中,这些是对象。
对象是储存在内存中的实体。但我们并不能直接接触到该对象。我们在程序中写的对象名,只是指向这一对象的引用(reference)。
引用和对象分离,是动态类型的核心。引用可以随时指向一个新的对象:
a = 3
a = 'at'
第一个语句中,3是储存在内存中的一个整数对象。通过赋值,引用a指向对象3。
第二个语句中,内存中建立对象‘at’,是一个字符串(string)。引用a指向了'at'。此时,对象3不再有引用指向它。Python会自动将没有引用指向的对象销毁(destruct),释放相应内存。
(对于小的整数和短字符串,Python会缓存这些对象,而不是频繁的建立和销毁。)
a = 5
b = a
a = a + 2
再看这个例子。通过前两个句子,我们让a,b指向同一个整数对象5(b = a的含义是让引用b指向引用a所指的那一个对象)。但第三个句子实际上对引用a重新赋值,让a指向一个新的对象7。此时a,b分别指向不同的对象。我们看到,即使是多个引用指向同一个对象,如果一个引用值发生变化,那么实际上是让这个引用指向一个新的引用,并不影响其他的引用的指向。从效果上看,就是各个引用各自独立,互不影响。
其它数据对象也是如此:
L1 = [1,2,3]
L2 = L1
L1 = 1
但注意以下情况
L1 = [1,2,3]
L2 = L1
L1[0] = 10
print L2
在该情况下,我们不再对L1这一引用赋值,而是对L1所指向的表的元素赋值。结果是,L2也同时发生变化。
原因何在呢?因为L1,L2的指向没有发生变化,依然指向那个表。表实际上是包含了多个引用的对象(每个引用是一个元素,比如L1[0],L1[1]..., 每个引用指向一个对象,比如1,2,3), 。而L1[0] = 10这一赋值操作,并不是改变L1的指向,而是对L1[0], 也就是表对象的一部份(一个元素),进行操作,所以所有指向该对象的引用都受到影响。
(与之形成对比的是,我们之前的赋值操作都没有对对象自身发生作用,只是改变引用指向。)
列表可以通过引用其元素,改变对象自身(in-place change)。这种对象类型,称为可变数据对象(mutable object),词典也是这样的数据类型。
而像之前的数字和字符串,不能改变对象本身,只能改变引用的指向,称为不可变数据对象(immutable object)。
我们之前学的元组(tuple),尽管可以调用引用元素,但不可以赋值,因此不能改变对象自身,所以也算是immutable object.
从动态类型看函数的参数传递
函数的参数传递,本质上传递的是引用。比如说:
def f(x):
x = 100
print x
a = 1
f(a)
print a
参数x是一个新的引用,指向a所指的对象。如果参数是不可变(immutable)的对象,a和x引用之间相互独立。对参数x的操作不会影响引用a。这样的传递类似于C语言中的值传递。
如果传递的是可变(mutable)的对象,那么改变函数参数,有可能改变原对象。所有指向原对象的引用都会受影响,编程的时候要对此问题留心。比如说:
def f(x):
x[0] = 100
print x
a = [1,2,3]
f(a)
print a
动态类型是Python的核心机制之一。可以在应用中慢慢熟悉。
总结
引用和对象的分离,对象是内存中储存数据的实体,引用指向对象。
可变对象,不可变对象数据分析师培训
函数值传递
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04