京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python函数的参数对应
我们已经接触过函数(function)的参数(arguments)传递。当时我们根据位置,传递对应的参数。我们将接触更多的参数传递方式。
回忆一下位置传递:
def f(a,b,c):
return a+b+c
print(f(1,2,3))
在调用f时,1,2,3根据位置分别传递给了a,b,c。
关键字传递
有些情况下,用位置传递会感觉比较死板。关键字(keyword)传递是根据每个参数的名字传递参数。关键字并不用遵守位置的对应关系。依然沿用上面f的定义,更改调用方式:
print(f(c=3,b=2,a=1))
关键字传递可以和位置传递混用。但位置参数要出现在关键字参数之前:
print(f(1,c=3,b=2))
参数默认值
在定义函数的时候,使用形如a=19的方式,可以给参数赋予默认值(default)。如果该参数最终没有被传递值,将使用该默认值。
def f(a,b,c=10):
return a+b+c
print(f(3,2))
print(f(3,2,1))
在第一次调用函数f时, 我们并没有足够的值,c没有被赋值,c将使用默认值10.
第二次调用函数的时候,c被赋值为1,不再使用默认值。
包裹传递
在定义函数时,我们有时候并不知道调用的时候会传递多少个参数。这时候,包裹(packing)位置参数,或者包裹关键字参数,来进行参数传递,会非常有用。
下面是包裹位置传递的例子:
def func(*name):
print type(name)
print name
func(1,4,6)
func(5,6,7,1,2,3)
两次调用,尽管参数个数不同,都基于同一个func定义。在func的参数表中,所有的参数被name收集,根据位置合并成一个元组(tuple),这就是包裹位置传递。
为了提醒Python参数,name是包裹位置传递所用的元组名,在定义func时,在name前加*号。
下面是包裹关键字传递的例子:
def func(**dict):
print type(dict)
print dict
func(a=1,b=9)
func(m=2,n=1,c=11)
与上面一个例子类似,dict是一个字典,收集所有的关键字,传递给函数func。为了提醒Python,参数dict是包裹关键字传递所用的字典,在dict前加**。
包裹传递的关键在于定义函数时,在相应元组或字典前加*或**。
解包裹
*和**,也可以在调用的时候使用,即解包裹(unpacking), 下面为例:
def func(a,b,c):
print a,b,c
args = (1,3,4)
func(*args)
在这个例子中,所谓的解包裹,就是在传递tuple时,让tuple的每一个元素对应一个位置参数。在调用func时使用*,是为了提醒Python:我想要把args拆成分散的三个元素,分别传递给a,b,c。(设想一下在调用func时,args前面没有*会是什么后果?)
相应的,也存在对词典的解包裹,使用相同的func定义,然后:
dict = {'a':1,'b':2,'c':3}
func(**dict)
在传递词典dict时,让词典的每个键值对作为一个关键字传递给func。
混合
在定义或者调用参数时,参数的几种传递方式可以混合。但在过程中要小心前后顺序。基本原则是,先位置,再关键字,再包裹位置,再包裹关键字,并且根据上面所说的原理细细分辨。
注意:请注意定义时和调用时的区分。包裹和解包裹并不是相反操作,是两个相对独立的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01