
“大数据”可以解决什么样的实际问题
“大数据”是我们天天挂在嘴边的词儿,但是若要让你说一说大数据可以解决哪些现实生活中的实际问题,可能你的大脑里是一片空白。因此,我们采访了20多位大数据厂商和提供大数据解决方案厂商的高管,看看他们到底利用大数据解决了现实生活中的哪些问题?
▲图片来源于网络
应用在医疗保健方面,如付款、欺诈和滥用等等:模式识别和异常检测可以识别医疗保险公司的欺诈、浪费和滥用。信用卡欺诈检测以毫秒为单位帮助金融服务公司保护他们的客户的安全,同时减少欺诈造成的损失。
Telco的嵌入式软件通过HPE出售给运营商:OSS BSS栈用于授权服务驱动到虚拟化(NSV堆栈);不只是应用在电话领域,而是整个服务集;更高的个性化粒度,以提高AdTech空间的点击率;与社交媒体丰富的上下文相关性;实时仪表板为投资公司提供专业的建议;完全满足合规性;IoT数据与实时数据集成。
每个药物的名称都是独一无二的:我们可以通过收集Twitter上的积极和消极的看法,确定公众情绪数据,并以此来决定我们是否需要进行更多的医生培训。在全渠道零售业中,更有针对性的向客户推送广告,实现更大的成交率。
Elsevier公司Scopus数据库收录了6000万没有标记的研究论文,并对其进行了标记、添加引用。因为这些论文的合理引进,很多作者的 H-Index都发生了改变,有的H-Index甚至上涨了5点;每年帮助美国专利局管理500万件专利申请,每月通过OCR扫描和标记录入200万页的数据。
我们的大数据SaaS解决方案允许我们的客户以实时流式方式收集网络流量和性能遥测,然后在仪表板和控制台中显示结果,同时还会监视触发条件以提高警报和报警,可用于识别网络活动或行为的异常模式,例如服务降级,带宽事件和安全事件(如DDoS攻击)等等。 我们还提供一个功能齐全的数据探索控制台,实现无限灵活的数据取证,从而快速准确的排除故障和识别问题的根本原因。最后,我们对网络路由和对等的高级分析可以让客户了解其流量在经过相邻网络时的行为,并进行网络更改以优化成本和服务质量。
我们有一个客户端将端点数据连接到智能灯泡,并显示KPI以达到改变人们心理的作用。当他们的NPS大于50,它会亮绿灯;NPS在45到49间,会亮黄色;当NPS小于45,它会亮红色。因为人人都想避开红灯,所以大家会努力让NPS高于50。
专注于个性化以改善客户体验(CX)。在现代零售中往往是实体商店与网上商店相结合,所以我们可以通过用户的地理位置、使用设备、购物习惯等等来进行个性化推荐。
针对数据驱动决策的自助分析:治理、控制访问适当的数据;投入时间来保护数据;具有基于标记的策略来管理访问;元数据的重要性;数据合理化以识别和消除重复数据。
车队管理:管理接近20多万车辆和相关人员,并整合交通和天气数据以预计车辆和包裹的交付时间。零售商可以通过跟踪卡车的到达时间,合理安排人员装卸。据悉,其中有一个客户每年管理280万次交货。
消除IT基础架构/集群的数据风险和治理,使IT基础架构成为主流,并利用Lambda创建差异化服务。
Stanley工具的医疗部门是利用RFID芯片和营销设备的传感器实现位置跟踪。对于急诊病人来说有一个很重要的CX就是我们在患者徽章和护理人员上使用RFID来跟踪交互时间。这不仅可以查看医患之间的互动,完善医疗记录,还可以在短时间内收集到较多的数据,获得更多细节。
银行因为业务的原因可能会确定某些企业是否存在,为了验证合法的商业信息,往往他们会雇佣数百人来验证业务是否合法。为了将企业匹配在一起,我们创建了一个分数工作流平台,对于每百家公司,我们会自动识别35个将他们交给审计师。
通过分析买方行为和网络指标,帮助人们更好地了解客户。如广告代理商和社交媒体平台的广泛采用;通过预测性维护和物联网提高产品和服务效率;降低公司理解网络安全威胁向量的风险;帮助安全供应商了解客户最大的责任在哪里;跟踪帕金森患者的震颤,查看药物是否有效;同步智能手机跟踪震颤;与医院合作,使用预测分析预测医疗事件。
全渠道客户分析与点击流、移动端、应用程序和实体数据混合在一个单一的数据集。实现物联网的运营分析;减少欺诈;实现数据驱动的产品和服务,如CRM和社交媒体。
基于语音的解决方案:之前客户服务主要依靠文本和聊天,但是我们能不能创建一种更智能的交互式解决方案?IT运营创新运行云自动化中心使用数据来分析和预测系统的健康状况。物流和车队管理与第三方系统集成,缩短航线。
我们帮助一个用户将电子邮件地址的搜索时间从两分钟缩短到千分之一秒,使得CSR更高效,帮助更多的客户。之前我们有一个售卖游泳衣的客户,他们一直认为他们的网站与其他竞争网站的目标受众是一致的。我们通过数据分析,向他们展示了他们瞄准的受众和实际购买产品的人有很大的出入,并使得他们重新瞄准买家,更有效的进行推荐。
即时预测市场趋势和客户需求:预测市场价格波动将如何影响生产计划;即时查看整个供应链的需求或供应变化;监控和分析生产过程中的所有偏差和质量问题;为每个客户提供正确的优惠和服务水平;提供一个实时显示销售变化的窗口;了解客户和潜在客户的评价;预测现金流以实时管理借款风险和收款期限。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15