
药店从业者,不能不知的数据分析方法
“按流程做事,用数据说话”
意味着定期进行科学的数据分析,找出门店存在的问题及可以挖掘的潜力,以利于正确开展下一步工作。
药店精细化管理管理实务技术倡导“按流程做事,用数据说话”。数据来源于流程,也正是因为有了流程,我们才有了数据分析。
定期进行科学的数据分析,是门店掌握经营方向的重要手段。但无论哪方面数据,分析只是一个开始,然后是计划、执行、考核。
数据分析的关健是能够找出门店存在的问题及可以挖掘的潜力,指导如何开展下一步工作才是最重要的。
日常数据分析要点
门店日常经营数据主要包括品项数、销售额、毛利额、毛利率、来客数、客单价、库存金额、库存天数、动销率、会员消费占比、各品项销售毛利占比、各货区商品进销存分析。
销售指标分析:
主要分析本月销售情况、本月销售指标完成情况、与去年同期对比情况。通过这组数据的分析可以知道同比销售趋势、实际销售与计划的差距。
销售毛利分析:
主要分析本月毛利率、毛利额情况,与去年同期对比情况。通过这组数据的分析可以知道同比毛利状况,以及是否在商品毛利方面存在不足。
客单价:
顾客单次购买商品的总价格。客人来得再多,可是每次总是购买廉价低档的商品,一样无法实现赢利,让营业员学会怎么去引导顾客去消费。
来客数:
进入店面的目标顾客的多少。零售讲求的是人气。这取决于店面的集客引客能力,与该店位置、定位、装修及连锁总部的营销策划能力密切相关。
商品动销率分析:
主要是本月商品动销品种统计。动销率分析,与上月对比情况。
商品动销率计算公式:动销品种/门店经营总品种数*100,滞销品种数:门店经营总品种数-动销品种数。
通过此组数据及具体单品的分析,可以看出门店在商品经营中存在的问题及潜力。
商品品类分析:
主要是本店本月各品类销售比重及与去年同期对比情况。
门店本月各品种类毛利比重及与去年同期对比情况,门店需对本月所有品类销售与毛利情况,特别是所有销售下降及毛利下降的品类进行全面分析,
并通过分析找出差距,同时提出改进方案。
心脑血管品类销售数据分析
我们先看一个门店心脑血管类销售数据的初步表单(见门店数据表1)。
在Excel中用饼图或仪表盘图示更为直接地显示本月门店销售情况。
根据这些数据,自然可以得出该门店的优势和不足,据此给经营决策提供有力的支持,让门店及时调整商品结构。
由门店数据表2和门店数据表3两个表的数据得知销售数、毛利数、品项数重点是调节血压类和活血化瘀类。
心脑血管类总品项数706,总业绩467738.99元,毛利额39659.22元,其中79个品项销售占80%业绩,35个品项占80%毛利额,166个盈利品项,其中高毛利品项28个,283个零毛利,257个负毛利品项。
药品是特殊商品,某品项数是否增加及增加哪个价格带与毛利带的商品,需要考虑疾病用药链接属性,脑血管用药、降血脂用药、心脏用药。
无论是化学药还是中成药都有先天不足,这也决定了这三个品项中的商品属性链接明显低于调节血压和活血化瘀。
调节血压的分类:
① 、中枢性降压药。可乐定、珍菊降压片、甲基多巴。
② 、肾上腺素受体阻断药。阻断药普萘洛尔(心得安)α1阻断药哌唑嗪、α及β阻断药拉贝洛尔。
③ 、影响交感神经递质的药物。利血平、肼曲嗪、氢氯噻嗪。
④ 、神经节阻断药美加明。
⑤ 、钙拮抗药硝苯地平。
⑥ 、周围血管扩张药肼曲嗪、硝普钠。
⑦ 、血管紧张素转换酶抑制药及血管紧张素Ⅱ受体阻断药卡托普利、氯沙坦、洛沙坦、缬沙坦、伊贝沙坦。
⑧ 、钾离子通道开放剂吡那地尔。
⑨ 、利尿降压药氢氯噻嗪。
⑩ 、其他吲哒帕胺、酮色林。
这些代表药物自然是需要从销售数据中得出门店联合用药有不足之处,因为药品的联合是基于疾病联合的。
比如糖尿病和冠心病等,糖尿病患者并发高血压只能应用普利和地平类。具体如下图4。
结论:
由于心脑血管用药是客流性品类,品牌性很强。
但是仍然有机会去强化第二品牌,但过度强化会造成商品销售的减低,结构不合理,调整替代品牌应取代无效益的品牌。
动销数据组案例分析
我们再看一个门店数据,此数据重点是动销品项、动销率、存销比、周转天数。
这些数据是相互关联的,如动销品项数据的变动,走低来客数也走低,周转天数加长,库存金额增加,客单价呈上升趋势(见门店数据表5)。
数据中反映出的问题警示我们,关注品项数及动销情况,主要是本月商品动销品种统计,动销率分析,与上月对比情况。
商品动销率计算公式:
动销品种/门店经营总品种数*100。
滞销品种数:
门店经营总品种数-动销品种数。
通过此组数据及具体单品的分析,可以看出门店在商品经营中存在的问题及潜力。
从存销比可以反映门店库存的合理程度,其合理范围是小于或等于1.75,如果大于或等于2必须调整。
来客数衰退时,一定是商品问题和管理问题。店长主要是管理者,是次要的销售者,要思考提高来客数,与居委会建立友好关系,掌握详细的商圈顾客信息。
可以从小区名称、小区户数、可否投递、来店频率、预估渗透率、预估来客数进行分析。
影响来客数还有价格问题,要注意促销价格、价格政策商品、商品定价的程度,商圈内来客数很多的,价格是敏感因素。
促销在来客数下滑时就不再是有效的经营改善措施,要懂得建立会员的目的到底是为什么?
其目的就是潜在销售量。
提升来客数,重点是提高商圈内知名度的定向活动、多频次的促销活动扩大商圈宣传范围、考虑相关商品品种、商品结构不能满足该商圈需求的因素、考虑是否商品价格过高的因素等。
透过以上简单的十个数据,再做商圈研究分析,看看商圈户数,在观察分析各品类的销售占比。
把这些数据展开来分析,看看到底是什么影响的,然后做SWOT分析表,最后的行动方案就出来了。将来客数按照优势、劣势、机会、威胁列出来,按月整理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25