都做数据分析,你为什么分析不出个所以然
无数据不运营。作为一个店铺的运营者,你也天天会盯着后台数据在那分析来分析去。可是情况还是那个情况,销量还是那个销量。有没有想过问题在哪里?你的分析和别人的分析有何不同呢?
真正的数据分析,你应该先弄清以下几个问题
问题一:首先,什么是数据分析,什么是店铺运营数据分析?
从数据到分析这个过程就是数据分析,数据本身不发挥价值,只有我们挖掘出的数据才有价值。
数据分析只是个手段,或者说只是个工具,我们最终的目的是得到数据背后有用的信息。
何为有用的信息?对我们店铺运营来说,有用信息就是所有和我们店铺相关的好的坏的数据及其背后产生的原因。
问题二:有必要数据分析吗?数据分析能给我带来什么好处?
数据分析的必要性就不多说了,简单地比喻,数据分析就是让我们不做瞎子,能实时看到问题的所在。好处就是,让我们清楚地知道我们商品“坏”在哪里?怎么修改。好又好在哪些地方,有没没有可以复制的可能,有没有作为模板的潜质。
问题三:对哪些数据进行分析?
其一:数据的维度有很多种,一个比较好理解的维度就是根据流量的路径来观察。
一个粗略的观察节点如下:苏宁易购首页→店铺→宝贝详情→购买、流量肯定是漏斗形状的减少。
A、从易购首页→店铺,需要思考
1、从哪里进入?进入的多、少?
2、被什么吸引?被什么样的图片吸引?
3、哪些人进入?这些人为什么会进入?
这里就涉及图片的创意、文案的创意、投放策略、关键词选择、投放位置选择。
B、从店铺→宝贝详情页,需要思考
1、 看了哪些宝贝?什么价格、位置的宝贝?
2、 哪些人看了宝贝?哪些人离开了?
3、 低价宝贝浏览的高?还是靠前宝贝浏览的高?
4、 宝贝图片对浏览有何影响?顾客对什么感兴趣?
这里涉及到店铺推广策略、定价策略、主图涉及、推广模块设置、焦点提炼、视觉设计等
C、从详情页→购买,需要思考
1、那些人咨询了客服?咨询后,买还是没买?
2、哪些人购买了?哪里人买的多?什么样的人买的多?
3、哪些宝贝卖的多?为什么卖的多?
4、 哪些人离开了?为什么离开?
这里涉及:催化购买、提升客单价、未付款客户服务、新老客户分析、关联销售、宝贝描述等
那在减少的环节(可以理解为问题所在:为什么减少?)就是我们分析数据的节点。简单举个例子,某女装店。在易购平台露出较多,但是从数据上看,真正点进店铺的流量不是很多。这就是分析问题的节点。
我们不禁要思考:为什么导流这么不给力?那些被吸引进店铺的买家是被哪些元素吸引?没被吸引的是什么原因?是图片?是文案?还是关键词?(问题很多,怎么一针见血找到问题的根结?)
其二:还可以从宏观VS微观、内部VS外部、横向VS纵向等分析方法
数据分析的原则和思维
我们要弄清楚一个原则:我们面临的数据那么多,不应该是数据指导我们,而应该是根据我们的目的去筛选使用数据。因此,在数据分析时,要坚持三要素:目的性、严谨性、落地性。
目的性:只有明确的要求才能有目的地去收集、分析相关数据,确保数据分析过程有效。是带着目的去指挥数据,而不是被数据指挥。
严谨性:就是要准确。通过什么工具用什么方法去收集、分析什么相关时间段的数据。
落地性:就是如何做。基于数据分析找出内在规律,为营销准备可执行支持。
明确了以上原则性要素后,就可以动手对数据进行分析了
常见有四种数据分析思维方式。
思维一:对照
也就是对比,单独数据是看不出来问题。通过横向和别人比,纵向和自己比,问题显而易见。如下图对照之后发现了问题想要找到原因,或者根本没法对比怎么办?想下拆分,继续挖掘。
思维二:拆分
举例:对比店铺数据,今天的销售额只是昨天的50%,这个只是发现了问题。至于问题的根源在哪里?向下挖掘!(如下图,一直找到问题所在)
思维三:降维
数据的维度就是我们数据表格中的那一列列的数据。数据太多对我们的分析造成影响,相关数据可以只保留一项。比如,转化率=成交用户数/访客数,所以转化率一个指标就可以体现成交用户数和访客数两个指标。
还是那个原则:我们只关心我们这次分析目标有关系的数据!
思维四:增维
何为增维?就是仅仅用现在的数据列表不能直观达到我要分析的目的。需要增加一列来反应我想要的指标。如下图
如果我们想看一下“毛呢外套“这个单品的竞争程度怎么样?如何分析呢?单独从现有的数据中你是不能直观得到的。我们发现,搜索指数代表的是需求,宝贝数代表的是供给也就是你的竞争。那么简单的除法,搜索指数/宝贝数 这个数据就可以用作竞争度的衡量标准!
结语
数据是一个店铺的眼睛,她记录着店铺运营的所有状况。而作为店铺的运营人员,能不能从数据中分析出有价值的信息,不仅体现运营者的能力,也会很大程度上影响一个店铺的销量。我们应该把数据分析当做必备能力,当做日常运营必须项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03