
都做数据分析,你为什么分析不出个所以然
无数据不运营。作为一个店铺的运营者,你也天天会盯着后台数据在那分析来分析去。可是情况还是那个情况,销量还是那个销量。有没有想过问题在哪里?你的分析和别人的分析有何不同呢?
真正的数据分析,你应该先弄清以下几个问题
问题一:首先,什么是数据分析,什么是店铺运营数据分析?
从数据到分析这个过程就是数据分析,数据本身不发挥价值,只有我们挖掘出的数据才有价值。
数据分析只是个手段,或者说只是个工具,我们最终的目的是得到数据背后有用的信息。
何为有用的信息?对我们店铺运营来说,有用信息就是所有和我们店铺相关的好的坏的数据及其背后产生的原因。
问题二:有必要数据分析吗?数据分析能给我带来什么好处?
数据分析的必要性就不多说了,简单地比喻,数据分析就是让我们不做瞎子,能实时看到问题的所在。好处就是,让我们清楚地知道我们商品“坏”在哪里?怎么修改。好又好在哪些地方,有没没有可以复制的可能,有没有作为模板的潜质。
问题三:对哪些数据进行分析?
其一:数据的维度有很多种,一个比较好理解的维度就是根据流量的路径来观察。
一个粗略的观察节点如下:苏宁易购首页→店铺→宝贝详情→购买、流量肯定是漏斗形状的减少。
A、从易购首页→店铺,需要思考
1、从哪里进入?进入的多、少?
2、被什么吸引?被什么样的图片吸引?
3、哪些人进入?这些人为什么会进入?
这里就涉及图片的创意、文案的创意、投放策略、关键词选择、投放位置选择。
B、从店铺→宝贝详情页,需要思考
1、 看了哪些宝贝?什么价格、位置的宝贝?
2、 哪些人看了宝贝?哪些人离开了?
3、 低价宝贝浏览的高?还是靠前宝贝浏览的高?
4、 宝贝图片对浏览有何影响?顾客对什么感兴趣?
这里涉及到店铺推广策略、定价策略、主图涉及、推广模块设置、焦点提炼、视觉设计等
C、从详情页→购买,需要思考
1、那些人咨询了客服?咨询后,买还是没买?
2、哪些人购买了?哪里人买的多?什么样的人买的多?
3、哪些宝贝卖的多?为什么卖的多?
4、 哪些人离开了?为什么离开?
这里涉及:催化购买、提升客单价、未付款客户服务、新老客户分析、关联销售、宝贝描述等
那在减少的环节(可以理解为问题所在:为什么减少?)就是我们分析数据的节点。简单举个例子,某女装店。在易购平台露出较多,但是从数据上看,真正点进店铺的流量不是很多。这就是分析问题的节点。
我们不禁要思考:为什么导流这么不给力?那些被吸引进店铺的买家是被哪些元素吸引?没被吸引的是什么原因?是图片?是文案?还是关键词?(问题很多,怎么一针见血找到问题的根结?)
其二:还可以从宏观VS微观、内部VS外部、横向VS纵向等分析方法
数据分析的原则和思维
我们要弄清楚一个原则:我们面临的数据那么多,不应该是数据指导我们,而应该是根据我们的目的去筛选使用数据。因此,在数据分析时,要坚持三要素:目的性、严谨性、落地性。
目的性:只有明确的要求才能有目的地去收集、分析相关数据,确保数据分析过程有效。是带着目的去指挥数据,而不是被数据指挥。
严谨性:就是要准确。通过什么工具用什么方法去收集、分析什么相关时间段的数据。
落地性:就是如何做。基于数据分析找出内在规律,为营销准备可执行支持。
明确了以上原则性要素后,就可以动手对数据进行分析了
常见有四种数据分析思维方式。
思维一:对照
也就是对比,单独数据是看不出来问题。通过横向和别人比,纵向和自己比,问题显而易见。如下图对照之后发现了问题想要找到原因,或者根本没法对比怎么办?想下拆分,继续挖掘。
思维二:拆分
举例:对比店铺数据,今天的销售额只是昨天的50%,这个只是发现了问题。至于问题的根源在哪里?向下挖掘!(如下图,一直找到问题所在)
思维三:降维
数据的维度就是我们数据表格中的那一列列的数据。数据太多对我们的分析造成影响,相关数据可以只保留一项。比如,转化率=成交用户数/访客数,所以转化率一个指标就可以体现成交用户数和访客数两个指标。
还是那个原则:我们只关心我们这次分析目标有关系的数据!
思维四:增维
何为增维?就是仅仅用现在的数据列表不能直观达到我要分析的目的。需要增加一列来反应我想要的指标。如下图
如果我们想看一下“毛呢外套“这个单品的竞争程度怎么样?如何分析呢?单独从现有的数据中你是不能直观得到的。我们发现,搜索指数代表的是需求,宝贝数代表的是供给也就是你的竞争。那么简单的除法,搜索指数/宝贝数 这个数据就可以用作竞争度的衡量标准!
结语
数据是一个店铺的眼睛,她记录着店铺运营的所有状况。而作为店铺的运营人员,能不能从数据中分析出有价值的信息,不仅体现运营者的能力,也会很大程度上影响一个店铺的销量。我们应该把数据分析当做必备能力,当做日常运营必须项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18