京公网安备 11010802034615号
经营许可证编号:京B2-20210330
都做数据分析,你为什么分析不出个所以然
无数据不运营。作为一个店铺的运营者,你也天天会盯着后台数据在那分析来分析去。可是情况还是那个情况,销量还是那个销量。有没有想过问题在哪里?你的分析和别人的分析有何不同呢?
真正的数据分析,你应该先弄清以下几个问题
问题一:首先,什么是数据分析,什么是店铺运营数据分析?
从数据到分析这个过程就是数据分析,数据本身不发挥价值,只有我们挖掘出的数据才有价值。
数据分析只是个手段,或者说只是个工具,我们最终的目的是得到数据背后有用的信息。
何为有用的信息?对我们店铺运营来说,有用信息就是所有和我们店铺相关的好的坏的数据及其背后产生的原因。
问题二:有必要数据分析吗?数据分析能给我带来什么好处?
数据分析的必要性就不多说了,简单地比喻,数据分析就是让我们不做瞎子,能实时看到问题的所在。好处就是,让我们清楚地知道我们商品“坏”在哪里?怎么修改。好又好在哪些地方,有没没有可以复制的可能,有没有作为模板的潜质。
问题三:对哪些数据进行分析?
其一:数据的维度有很多种,一个比较好理解的维度就是根据流量的路径来观察。
一个粗略的观察节点如下:苏宁易购首页→店铺→宝贝详情→购买、流量肯定是漏斗形状的减少。
A、从易购首页→店铺,需要思考
1、从哪里进入?进入的多、少?
2、被什么吸引?被什么样的图片吸引?
3、哪些人进入?这些人为什么会进入?
这里就涉及图片的创意、文案的创意、投放策略、关键词选择、投放位置选择。
B、从店铺→宝贝详情页,需要思考
1、 看了哪些宝贝?什么价格、位置的宝贝?
2、 哪些人看了宝贝?哪些人离开了?
3、 低价宝贝浏览的高?还是靠前宝贝浏览的高?
4、 宝贝图片对浏览有何影响?顾客对什么感兴趣?
这里涉及到店铺推广策略、定价策略、主图涉及、推广模块设置、焦点提炼、视觉设计等
C、从详情页→购买,需要思考
1、那些人咨询了客服?咨询后,买还是没买?
2、哪些人购买了?哪里人买的多?什么样的人买的多?
3、哪些宝贝卖的多?为什么卖的多?
4、 哪些人离开了?为什么离开?
这里涉及:催化购买、提升客单价、未付款客户服务、新老客户分析、关联销售、宝贝描述等
那在减少的环节(可以理解为问题所在:为什么减少?)就是我们分析数据的节点。简单举个例子,某女装店。在易购平台露出较多,但是从数据上看,真正点进店铺的流量不是很多。这就是分析问题的节点。
我们不禁要思考:为什么导流这么不给力?那些被吸引进店铺的买家是被哪些元素吸引?没被吸引的是什么原因?是图片?是文案?还是关键词?(问题很多,怎么一针见血找到问题的根结?)
其二:还可以从宏观VS微观、内部VS外部、横向VS纵向等分析方法
数据分析的原则和思维
我们要弄清楚一个原则:我们面临的数据那么多,不应该是数据指导我们,而应该是根据我们的目的去筛选使用数据。因此,在数据分析时,要坚持三要素:目的性、严谨性、落地性。
目的性:只有明确的要求才能有目的地去收集、分析相关数据,确保数据分析过程有效。是带着目的去指挥数据,而不是被数据指挥。
严谨性:就是要准确。通过什么工具用什么方法去收集、分析什么相关时间段的数据。
落地性:就是如何做。基于数据分析找出内在规律,为营销准备可执行支持。
明确了以上原则性要素后,就可以动手对数据进行分析了
常见有四种数据分析思维方式。
思维一:对照
也就是对比,单独数据是看不出来问题。通过横向和别人比,纵向和自己比,问题显而易见。如下图对照之后发现了问题想要找到原因,或者根本没法对比怎么办?想下拆分,继续挖掘。
思维二:拆分
举例:对比店铺数据,今天的销售额只是昨天的50%,这个只是发现了问题。至于问题的根源在哪里?向下挖掘!(如下图,一直找到问题所在)
思维三:降维
数据的维度就是我们数据表格中的那一列列的数据。数据太多对我们的分析造成影响,相关数据可以只保留一项。比如,转化率=成交用户数/访客数,所以转化率一个指标就可以体现成交用户数和访客数两个指标。
还是那个原则:我们只关心我们这次分析目标有关系的数据!
思维四:增维
何为增维?就是仅仅用现在的数据列表不能直观达到我要分析的目的。需要增加一列来反应我想要的指标。如下图
如果我们想看一下“毛呢外套“这个单品的竞争程度怎么样?如何分析呢?单独从现有的数据中你是不能直观得到的。我们发现,搜索指数代表的是需求,宝贝数代表的是供给也就是你的竞争。那么简单的除法,搜索指数/宝贝数 这个数据就可以用作竞争度的衡量标准!
结语
数据是一个店铺的眼睛,她记录着店铺运营的所有状况。而作为店铺的运营人员,能不能从数据中分析出有价值的信息,不仅体现运营者的能力,也会很大程度上影响一个店铺的销量。我们应该把数据分析当做必备能力,当做日常运营必须项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29