
都做数据分析,你为什么分析不出个所以然
无数据不运营。作为一个店铺的运营者,你也天天会盯着后台数据在那分析来分析去。可是情况还是那个情况,销量还是那个销量。有没有想过问题在哪里?你的分析和别人的分析有何不同呢?
真正的数据分析,你应该先弄清以下几个问题
问题一:首先,什么是数据分析,什么是店铺运营数据分析?
从数据到分析这个过程就是数据分析,数据本身不发挥价值,只有我们挖掘出的数据才有价值。
数据分析只是个手段,或者说只是个工具,我们最终的目的是得到数据背后有用的信息。
何为有用的信息?对我们店铺运营来说,有用信息就是所有和我们店铺相关的好的坏的数据及其背后产生的原因。
问题二:有必要数据分析吗?数据分析能给我带来什么好处?
数据分析的必要性就不多说了,简单地比喻,数据分析就是让我们不做瞎子,能实时看到问题的所在。好处就是,让我们清楚地知道我们商品“坏”在哪里?怎么修改。好又好在哪些地方,有没没有可以复制的可能,有没有作为模板的潜质。
问题三:对哪些数据进行分析?
其一:数据的维度有很多种,一个比较好理解的维度就是根据流量的路径来观察。
一个粗略的观察节点如下:苏宁易购首页→店铺→宝贝详情→购买、流量肯定是漏斗形状的减少。
A、从易购首页→店铺,需要思考
1、从哪里进入?进入的多、少?
2、被什么吸引?被什么样的图片吸引?
3、哪些人进入?这些人为什么会进入?
这里就涉及图片的创意、文案的创意、投放策略、关键词选择、投放位置选择。
B、从店铺→宝贝详情页,需要思考
1、 看了哪些宝贝?什么价格、位置的宝贝?
2、 哪些人看了宝贝?哪些人离开了?
3、 低价宝贝浏览的高?还是靠前宝贝浏览的高?
4、 宝贝图片对浏览有何影响?顾客对什么感兴趣?
这里涉及到店铺推广策略、定价策略、主图涉及、推广模块设置、焦点提炼、视觉设计等
C、从详情页→购买,需要思考
1、那些人咨询了客服?咨询后,买还是没买?
2、哪些人购买了?哪里人买的多?什么样的人买的多?
3、哪些宝贝卖的多?为什么卖的多?
4、 哪些人离开了?为什么离开?
这里涉及:催化购买、提升客单价、未付款客户服务、新老客户分析、关联销售、宝贝描述等
那在减少的环节(可以理解为问题所在:为什么减少?)就是我们分析数据的节点。简单举个例子,某女装店。在易购平台露出较多,但是从数据上看,真正点进店铺的流量不是很多。这就是分析问题的节点。
我们不禁要思考:为什么导流这么不给力?那些被吸引进店铺的买家是被哪些元素吸引?没被吸引的是什么原因?是图片?是文案?还是关键词?(问题很多,怎么一针见血找到问题的根结?)
其二:还可以从宏观VS微观、内部VS外部、横向VS纵向等分析方法
数据分析的原则和思维
我们要弄清楚一个原则:我们面临的数据那么多,不应该是数据指导我们,而应该是根据我们的目的去筛选使用数据。因此,在数据分析时,要坚持三要素:目的性、严谨性、落地性。
目的性:只有明确的要求才能有目的地去收集、分析相关数据,确保数据分析过程有效。是带着目的去指挥数据,而不是被数据指挥。
严谨性:就是要准确。通过什么工具用什么方法去收集、分析什么相关时间段的数据。
落地性:就是如何做。基于数据分析找出内在规律,为营销准备可执行支持。
明确了以上原则性要素后,就可以动手对数据进行分析了
常见有四种数据分析思维方式。
思维一:对照
也就是对比,单独数据是看不出来问题。通过横向和别人比,纵向和自己比,问题显而易见。如下图对照之后发现了问题想要找到原因,或者根本没法对比怎么办?想下拆分,继续挖掘。
思维二:拆分
举例:对比店铺数据,今天的销售额只是昨天的50%,这个只是发现了问题。至于问题的根源在哪里?向下挖掘!(如下图,一直找到问题所在)
思维三:降维
数据的维度就是我们数据表格中的那一列列的数据。数据太多对我们的分析造成影响,相关数据可以只保留一项。比如,转化率=成交用户数/访客数,所以转化率一个指标就可以体现成交用户数和访客数两个指标。
还是那个原则:我们只关心我们这次分析目标有关系的数据!
思维四:增维
何为增维?就是仅仅用现在的数据列表不能直观达到我要分析的目的。需要增加一列来反应我想要的指标。如下图
如果我们想看一下“毛呢外套“这个单品的竞争程度怎么样?如何分析呢?单独从现有的数据中你是不能直观得到的。我们发现,搜索指数代表的是需求,宝贝数代表的是供给也就是你的竞争。那么简单的除法,搜索指数/宝贝数 这个数据就可以用作竞争度的衡量标准!
结语
数据是一个店铺的眼睛,她记录着店铺运营的所有状况。而作为店铺的运营人员,能不能从数据中分析出有价值的信息,不仅体现运营者的能力,也会很大程度上影响一个店铺的销量。我们应该把数据分析当做必备能力,当做日常运营必须项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29