京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术助力传统产业走向智能制造时代
有人认为传统产业对大数据技术的应用会非常落后,但作为传统家电制造企业来说,格力掌门人董明珠也曾表示,既然格力可以掌握空调的现状,也可以预知未来,还可以做数据分析判断等。在格力的经营理念中也明确写到“一个没有创新的企业是没有灵魂的企业”。格力在大数据应用上的探索已经初具成果。他们对科技潮流的把握非常敏锐,在大数据时代它更是以实际成功证明了大数据不仅可以与传统产业结合,而且还能以更智能的方式促进传统产业的发展。
格力集团董事长兼总裁董明珠在接受记者采访时曾表示,格力生产空调看起来是传统行业,但实际上也运用了大数据思维。“我们用互联网、大数据做空调,格力空调运行得怎么样,我们在珠海就可以监控到相关数据。”而事实上,除了珠海格力,作为格力集团生产出口基地的芜湖格力,大数据的运用也早已投入到生产运营的各个环节,今天我们就一起走进芜湖格力,感受一下大数据在智能制造领域发挥的价值。
格力电器(芜湖)有限公司(以下简称“芜湖格力”)在2012年筹备期间便开始了ERP(企业资源计划系统)、MES(制造企业生产过程执行系统)的实施之旅,相关数据展示平台都由IT部门自主研发,经过3年时间的数据累积,在数据分析环节使用过水晶报表等一系列分析平台,数据分析的过程需要由技术人员操作,流程复杂,时效性差,对业务支持有限。而面对业务流程中不断递增的分析需求,以及业务决策的效率要求,需要一款支持多源业务数据整合,敏捷操作以及可视化展现的大数据分析软件。BI平台不仅轻松满足了这些要求,且实施周期短,对TB级到PB级数据能做到秒级响应,大大提高了业务决策的效率和价值。
芜湖格力BI项目负责人生产计划部科长谢传辉介绍,为改进工厂制造的现状,IT部门引进了BI产品,希望通过平台对这些影响生产经济效率的潜在因素进行分析,达到以下目的:1、减少物流配送过程中纸质单据,节约公司成本;2、提高备料过程管控;3、降低生产异常核实处理的时间,提高工作效率;4、降低因物料配送问题导致的生产异常。
芜湖格力的信息化系统发展分为两个阶段:流程管控和数据采集。由于生产型企业本身涉及的流程繁多,在靠人力运维的时代,只能在电脑上用EXCEL表格进行监控,经过MES(制造企业生产过程执行系统)系统的全面实施,目前已经采集到物流配送过程中的库存数据、拣选备料数据、配送执行数据和分厂接收数据,还差点检数据未采集。第一步:实现PDA点检,实现物料点检信息化,完善采集订单齐套数据。第二步:通过采集的从订单下达到物料上线生产中间一系列的操作数据,搭建一整套的信息化BI系统,实现过程的实时监控和异常预警。
生产线监控
图3芜湖格力MES生产效率分析
之前很多物料的短缺,格力是靠人工去一一核实和查询,虽然系统有MRP(物料需求计划系统)在运行,但是数据量庞大而明细指标繁杂,业务人员进行具体数据分析时往往需要IT人员配合建模、计算等,一份报表的分析通常费时耗力。而现在,通过MES和MPR采集的系统数据,可连接BI平台进行实时的多维分析。例如,物料齐套检查这项工作,以前需要点对点针对相关人员进行排查,而现在检查的结果是在分析平台实时展现,指标体系更可以根据情况灵活调整,IT人员的工作效率提升了30%以上。
质量控制
之前对于现场的生产过程和质量管理都是人工将系统数据导入再利用EXCEL内置的图表处理进行简单的分析。通过与技术方的合作,芜湖格力开始结合更多的业务分析维度进行探索式分析和分析预测,借助大数据分析平台实现从产线、班组以及分厂多个维度各个层面来展示公司整体生产运营情况。
图4芜湖格力项目价值实现杠杆
另外,业务部门从最开始不知道能不能发挥价值到后来越来越多的尝试使用,再到现在已经认可了分析价值,还会根据实际应用场景提出分析改善意见。按照目前整个平台实施的情况来看,已经解放了40%左右的IT工作量,让IT人员能减少了大量的重复工作,更好的投入到更重要的工作,比如对平台的技术支持上来。现在能够用实时客观的数据去代替人工核验流程,实现业务运转的自动化,包括自动排产、自动效率分析、错误数据预警等。这些都有赖于数据分析平台的建立。
根据平台使用的深入,谢传辉介绍,对IT部门来说价值是非常明显的。就整体业务来说,下一步会讨论如何将分析平台与原有的大数据基础平台结合增强数据处理的闭环率以及数据运行效率。另外通过在业务环节增加传感器等方式进一步做好数据采集,扩大数据分析的应用范围。对芜湖格力来说,企业数据化运营和决策刚刚起步,系统化和标准化的原则还需要行业专家的进一步指导,能为提供更多业内最佳实践的参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26