
大数据技术助力传统产业走向智能制造时代
有人认为传统产业对大数据技术的应用会非常落后,但作为传统家电制造企业来说,格力掌门人董明珠也曾表示,既然格力可以掌握空调的现状,也可以预知未来,还可以做数据分析判断等。在格力的经营理念中也明确写到“一个没有创新的企业是没有灵魂的企业”。格力在大数据应用上的探索已经初具成果。他们对科技潮流的把握非常敏锐,在大数据时代它更是以实际成功证明了大数据不仅可以与传统产业结合,而且还能以更智能的方式促进传统产业的发展。
格力集团董事长兼总裁董明珠在接受记者采访时曾表示,格力生产空调看起来是传统行业,但实际上也运用了大数据思维。“我们用互联网、大数据做空调,格力空调运行得怎么样,我们在珠海就可以监控到相关数据。”而事实上,除了珠海格力,作为格力集团生产出口基地的芜湖格力,大数据的运用也早已投入到生产运营的各个环节,今天我们就一起走进芜湖格力,感受一下大数据在智能制造领域发挥的价值。
格力电器(芜湖)有限公司(以下简称“芜湖格力”)在2012年筹备期间便开始了ERP(企业资源计划系统)、MES(制造企业生产过程执行系统)的实施之旅,相关数据展示平台都由IT部门自主研发,经过3年时间的数据累积,在数据分析环节使用过水晶报表等一系列分析平台,数据分析的过程需要由技术人员操作,流程复杂,时效性差,对业务支持有限。而面对业务流程中不断递增的分析需求,以及业务决策的效率要求,需要一款支持多源业务数据整合,敏捷操作以及可视化展现的大数据分析软件。BI平台不仅轻松满足了这些要求,且实施周期短,对TB级到PB级数据能做到秒级响应,大大提高了业务决策的效率和价值。
芜湖格力BI项目负责人生产计划部科长谢传辉介绍,为改进工厂制造的现状,IT部门引进了BI产品,希望通过平台对这些影响生产经济效率的潜在因素进行分析,达到以下目的:1、减少物流配送过程中纸质单据,节约公司成本;2、提高备料过程管控;3、降低生产异常核实处理的时间,提高工作效率;4、降低因物料配送问题导致的生产异常。
芜湖格力的信息化系统发展分为两个阶段:流程管控和数据采集。由于生产型企业本身涉及的流程繁多,在靠人力运维的时代,只能在电脑上用EXCEL表格进行监控,经过MES(制造企业生产过程执行系统)系统的全面实施,目前已经采集到物流配送过程中的库存数据、拣选备料数据、配送执行数据和分厂接收数据,还差点检数据未采集。第一步:实现PDA点检,实现物料点检信息化,完善采集订单齐套数据。第二步:通过采集的从订单下达到物料上线生产中间一系列的操作数据,搭建一整套的信息化BI系统,实现过程的实时监控和异常预警。
生产线监控
图3芜湖格力MES生产效率分析
之前很多物料的短缺,格力是靠人工去一一核实和查询,虽然系统有MRP(物料需求计划系统)在运行,但是数据量庞大而明细指标繁杂,业务人员进行具体数据分析时往往需要IT人员配合建模、计算等,一份报表的分析通常费时耗力。而现在,通过MES和MPR采集的系统数据,可连接BI平台进行实时的多维分析。例如,物料齐套检查这项工作,以前需要点对点针对相关人员进行排查,而现在检查的结果是在分析平台实时展现,指标体系更可以根据情况灵活调整,IT人员的工作效率提升了30%以上。
质量控制
之前对于现场的生产过程和质量管理都是人工将系统数据导入再利用EXCEL内置的图表处理进行简单的分析。通过与技术方的合作,芜湖格力开始结合更多的业务分析维度进行探索式分析和分析预测,借助大数据分析平台实现从产线、班组以及分厂多个维度各个层面来展示公司整体生产运营情况。
图4芜湖格力项目价值实现杠杆
另外,业务部门从最开始不知道能不能发挥价值到后来越来越多的尝试使用,再到现在已经认可了分析价值,还会根据实际应用场景提出分析改善意见。按照目前整个平台实施的情况来看,已经解放了40%左右的IT工作量,让IT人员能减少了大量的重复工作,更好的投入到更重要的工作,比如对平台的技术支持上来。现在能够用实时客观的数据去代替人工核验流程,实现业务运转的自动化,包括自动排产、自动效率分析、错误数据预警等。这些都有赖于数据分析平台的建立。
根据平台使用的深入,谢传辉介绍,对IT部门来说价值是非常明显的。就整体业务来说,下一步会讨论如何将分析平台与原有的大数据基础平台结合增强数据处理的闭环率以及数据运行效率。另外通过在业务环节增加传感器等方式进一步做好数据采集,扩大数据分析的应用范围。对芜湖格力来说,企业数据化运营和决策刚刚起步,系统化和标准化的原则还需要行业专家的进一步指导,能为提供更多业内最佳实践的参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23