
大数据时代三个“关键词” 不懂你就OUT了
数据化有狭义和广义之分。从狭义看,数据化是指将事物及其运动转化为可识别信息的过程。从广义看,数据化是指利用基础数据全面认知并优化改造客观世界的过程。数据是一种客观存在,把这些客观存在的数据找出来,就是数据化的过程。如何有效获取数据?其重要手段就是利用大数据,这本身也是数据化的集中体现。
大数据不同于小数据。相对于大数据而言,过去我们熟悉的标准化统计数据就是小数据。大数据之所以在网络时代快速发展,是因为有一系列幕后的推动力量,包括摩尔定律的作用、互联网与移动互联网的发展,以及社交网络、传感设备、智能终端、智能制造的出现等,正是这些力量促使了大数据爆发性增长。从种类上看,大数据不仅包括传统的统计数据,还包括实时、连续发生的交易数据、行为数据、传感数据,等等。其基本特点是多杂碎快。
大数据之所以重要,是因为它能做很多过去的小数据做不了的事情。大数据的作用可以简单归纳为5个效应:一是识别效应,它可以识别身份、位置、状态、真假;二是重现效应,它可以再现过去的场景,实现过程的追溯;三是关联效应,通过对数据的相关分析、联想分析、聚类分析,可以找出事物之间的联系;四是溢价效应,大数据的应用可以产生新的数据,有利于发现事物变化的内在规律;五是预测效应,利用大数据可以对经济、天气、灾害、疾病以及人类的行为进行预测分析。
数据化是信息社会的重要标志。人类经过农业社会、工业社会,现在已经进入了信息社会。信息社会一定是高度信息化的社会,也一定是高度数据化的社会。尤其是大数据技术的出现,使过去不可计量、存储、分析和共享的很多东西都被数据化了,这标志人类在寻求量化世界的道路上前进了一大步,人们认识世界的能力有了空前提高。就像我们现已熟知的定式、公理、公式,客观上早就存在,一经被人发现就变得非常有价值,成为我们行动的利器。数据也是这样,过去我们没有技术和手段,不能大量发现和捕捉到它。现在我们有了大数据技术,就离发现事物的本质及其变化规律更近了。所以说,有了大数据,所有可以数据化的信息都被数据化了,人类认识和改变世界的能力也就大大提升了。
关键词2
升维:数据化能力决定竞争能力
“升维”一词来自于科幻作家刘慈欣的小说《三体》。在这里借用这个词汇想表达的是,人类从农业社会、工业社会到信息社会,就是一个不断升维的过程。对于农业社会而言,工业社会就是升维。对于工业社会来讲,信息社会就是升维。信息社会与工业社会之间的竞争,不是在一个维度,更不在一个层次。
信息革命已经将人类带进了信息社会。所谓信息社会,就是建立在工业社会之上,全面实现信息化,并体现出以人为本、可持续和包容发展理念的新型社会。今天的中国,正处在重要转型期。虽然我们面临许多困难和挑战,但在创新、协调、绿色、开放、共享的新发展理念引领下,新型工业化、信息化、城镇化、农业现代化和绿色化进程势必持续向前。因此,当工业社会升维到信息社会时,我们的城镇和乡村也会随之加快信息化进程。
仅以城市为例,工业化城市升维到信息化城市,而信息化城市的重要标志之一,就是高度数据化。城市的基础设施、经济、社会、政务、生活等都将在“升维”的过程中实现高度的数据化。概括地讲,就是一切都将“用数据说话,靠数据决策,依数据行动”。信息革命是推动城市数据化的主要动力。我认为,未来的推动力将会来自以下几个方面:一是信息化,全球经济发展的推动力;二是网络化,连接一切;三是宽带化,“极速”宽带不是梦;四是智能化,智能产品、智能工厂大量涌现;五是服务化,服务环节创造的价值可以占到90%以上;六是社会化,管理运营的社会化;七是生态化,从价值链向生态圈转型;八是平台化,企业运营、政府治理都将平台化。围绕上述发展趋势,决定城市竞争力的核心要素,将包括:数据采集能力、数据处理能力、数据传播能力、数据利用能力、数据安全能力等。未来城市之间的竞争将体现为数据化能力之间的竞争。
关键词3
数据开放:大数据战略的突破口
实施国家大数据战略,关键在于推进数据资源开放共享。推进大数据战略,并不需要政府花钱大量补贴和建立这一领域的新兴产业,只需加快政府数据开放共享,就能催生一个重要的新增长点——新型的服务业。建立大数据的基础设施,可以让经济增长潜力迅速迸发出来,这是因为公司可以用这些数据创造价值,进而可能创造新的服务行业。数据已经在那儿了,开放没有什么成本,赢得的却是新的发展机会。
需要说明的是,大数据战略中的数据开放,与我们常说的信息公开有所不同。以往的信息公开往往是政府将加工好的信息放到网上去,而数据开放则强调开放更多的基础数据,比如,交通大数据、通信大数据等。让基础数据流动起来,才能够真正释放其应有的价值,才能够通过这些数据去整合资源,创造出新的商业模式和新的业态。近年来,国内已有不少城市和企业开展了类似的数据开放应用活动,通过数据开放产生经济和社会价值的实践,让人们逐渐认识到数据的价值和数据开放的重要性。总之,信息社会已经来临,现在的行动,决定未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14