
大数据时代三个“关键词” 不懂你就OUT了
数据化有狭义和广义之分。从狭义看,数据化是指将事物及其运动转化为可识别信息的过程。从广义看,数据化是指利用基础数据全面认知并优化改造客观世界的过程。数据是一种客观存在,把这些客观存在的数据找出来,就是数据化的过程。如何有效获取数据?其重要手段就是利用大数据,这本身也是数据化的集中体现。
大数据不同于小数据。相对于大数据而言,过去我们熟悉的标准化统计数据就是小数据。大数据之所以在网络时代快速发展,是因为有一系列幕后的推动力量,包括摩尔定律的作用、互联网与移动互联网的发展,以及社交网络、传感设备、智能终端、智能制造的出现等,正是这些力量促使了大数据爆发性增长。从种类上看,大数据不仅包括传统的统计数据,还包括实时、连续发生的交易数据、行为数据、传感数据,等等。其基本特点是多杂碎快。
大数据之所以重要,是因为它能做很多过去的小数据做不了的事情。大数据的作用可以简单归纳为5个效应:一是识别效应,它可以识别身份、位置、状态、真假;二是重现效应,它可以再现过去的场景,实现过程的追溯;三是关联效应,通过对数据的相关分析、联想分析、聚类分析,可以找出事物之间的联系;四是溢价效应,大数据的应用可以产生新的数据,有利于发现事物变化的内在规律;五是预测效应,利用大数据可以对经济、天气、灾害、疾病以及人类的行为进行预测分析。
数据化是信息社会的重要标志。人类经过农业社会、工业社会,现在已经进入了信息社会。信息社会一定是高度信息化的社会,也一定是高度数据化的社会。尤其是大数据技术的出现,使过去不可计量、存储、分析和共享的很多东西都被数据化了,这标志人类在寻求量化世界的道路上前进了一大步,人们认识世界的能力有了空前提高。就像我们现已熟知的定式、公理、公式,客观上早就存在,一经被人发现就变得非常有价值,成为我们行动的利器。数据也是这样,过去我们没有技术和手段,不能大量发现和捕捉到它。现在我们有了大数据技术,就离发现事物的本质及其变化规律更近了。所以说,有了大数据,所有可以数据化的信息都被数据化了,人类认识和改变世界的能力也就大大提升了。
关键词2
升维:数据化能力决定竞争能力
“升维”一词来自于科幻作家刘慈欣的小说《三体》。在这里借用这个词汇想表达的是,人类从农业社会、工业社会到信息社会,就是一个不断升维的过程。对于农业社会而言,工业社会就是升维。对于工业社会来讲,信息社会就是升维。信息社会与工业社会之间的竞争,不是在一个维度,更不在一个层次。
信息革命已经将人类带进了信息社会。所谓信息社会,就是建立在工业社会之上,全面实现信息化,并体现出以人为本、可持续和包容发展理念的新型社会。今天的中国,正处在重要转型期。虽然我们面临许多困难和挑战,但在创新、协调、绿色、开放、共享的新发展理念引领下,新型工业化、信息化、城镇化、农业现代化和绿色化进程势必持续向前。因此,当工业社会升维到信息社会时,我们的城镇和乡村也会随之加快信息化进程。
仅以城市为例,工业化城市升维到信息化城市,而信息化城市的重要标志之一,就是高度数据化。城市的基础设施、经济、社会、政务、生活等都将在“升维”的过程中实现高度的数据化。概括地讲,就是一切都将“用数据说话,靠数据决策,依数据行动”。信息革命是推动城市数据化的主要动力。我认为,未来的推动力将会来自以下几个方面:一是信息化,全球经济发展的推动力;二是网络化,连接一切;三是宽带化,“极速”宽带不是梦;四是智能化,智能产品、智能工厂大量涌现;五是服务化,服务环节创造的价值可以占到90%以上;六是社会化,管理运营的社会化;七是生态化,从价值链向生态圈转型;八是平台化,企业运营、政府治理都将平台化。围绕上述发展趋势,决定城市竞争力的核心要素,将包括:数据采集能力、数据处理能力、数据传播能力、数据利用能力、数据安全能力等。未来城市之间的竞争将体现为数据化能力之间的竞争。
关键词3
数据开放:大数据战略的突破口
实施国家大数据战略,关键在于推进数据资源开放共享。推进大数据战略,并不需要政府花钱大量补贴和建立这一领域的新兴产业,只需加快政府数据开放共享,就能催生一个重要的新增长点——新型的服务业。建立大数据的基础设施,可以让经济增长潜力迅速迸发出来,这是因为公司可以用这些数据创造价值,进而可能创造新的服务行业。数据已经在那儿了,开放没有什么成本,赢得的却是新的发展机会。
需要说明的是,大数据战略中的数据开放,与我们常说的信息公开有所不同。以往的信息公开往往是政府将加工好的信息放到网上去,而数据开放则强调开放更多的基础数据,比如,交通大数据、通信大数据等。让基础数据流动起来,才能够真正释放其应有的价值,才能够通过这些数据去整合资源,创造出新的商业模式和新的业态。近年来,国内已有不少城市和企业开展了类似的数据开放应用活动,通过数据开放产生经济和社会价值的实践,让人们逐渐认识到数据的价值和数据开放的重要性。总之,信息社会已经来临,现在的行动,决定未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30