
视频大数据对智慧城市建设有何作用
一、什么是视频大数据?
基于这个问题,我们可以从几个方面来理解。首先,大家都知道,大数据有“4V”特征:Volume(数据规模)、Variety(数据类型)、Velocity(处理速度)、Value(数据价值)。一、数据规模,视频数据基本是PB级别以上,体量足够大;二、数据类型,视频中有各种各样的内容信息,有人、车、物等信息,有各种行为信息,同时,视频可以有多种来源,可来自城市管理、公共安全、企业、家庭等多种领域;三、处理速度,当前,以Hadoop为代表的大数据处理技术发展非常迅速,能够针对海量的结构化、半结构化、非结构化数据提供非常高的处理效率;四、数据价值,视频大数据能够真正体现价值的地方,就是将视频数据全面利用起来,为城市的建设、管理、安全做出贡献。
其次,在《大数据时代》一书中,指出大数据的精髓在于我们分析数据时的三个转变,同样的,视频大数据也吻合这三个转变:一、分析数据的全集而非数据的采样;二、不追求精确性,由于数据非常多,即使出现一些不精确的数据,也不会影响分析结果;三、更加关心相关关系,而非因果关系,大数据的优势就在于数据的关联分析,在关联分析中能够得到很多有用的结果。再次,从整个大数据的生态来看,数据是基础,技术是关键,服务是核心。
综上所述,视频大数据并不只是拥有海量的视频数据,它需要提取海量的视频内容信息,基于专业的技术工具,挖掘出价值信息,并为用户提供更好的服务。
二、视频大数据发展现状及面临的问题
在互联网及IT领域,大数据的发展已相当成熟。然而,在视频监控领域,大数据还处于起步阶段。当然,随着智慧城市的发展,视频大数据会逐渐发展成熟并发挥越来越重要的作用。
首先,随着智慧城市建设的不断深入,视频大数据的需求越来越强烈。同时,越来越多的用户对业务提出了更高的要求,比如公安业务,要求能够从事后分析向事前预测转变。面对这些问题及需求,必须采用大数据来解决。所以,在智慧城市建设中,大数据已被推到了风口浪尖上。其次,越来越多的视频监控企业正在接触大数据,并有了初步的探索和应用。当前的一些大数据产品及应用主要有:视频云存储、云分析、数据应用。
在互联网行业中,大数据的分析对象主要是日志、用户行为信息、网页索引等数据,是计算机可以识别的结构化数据;而视频监控行业中,大数据需要分析的对象主要是视频、图片、音频等非结构化数据。所以,相比互联网大数据,视频大数据有诸多不同的地方,当然也有诸多可参考借鉴的地方,毕竟技术是相通的。纵观视频大数据,其主要包含以下核心技术:视频结构化、大数据处理技术和数据分析模型。
随着大数据的发展,许多问题逐渐暴露出来,主要表现在:智能分析技术不够成熟、数据应用不够深入、数据共享不够广泛和标准化建设不够全面。
三、视频大数据对智慧城市的作用
视频大数据的建设对智慧城市的作用主要体现在以下几个方面:
1、民生服务。在我们城市的大街小巷、商场、饭店等地方,布满了大大小小的摄像头,基于这么多监控点位产生的海量数据,可以选择性的开放一些数据给公众,为城市公民提供更好的“衣食住行”相关的服务,比如实时的交通路网信息、商场的实时人流状况以及“透明厨房”等等。
2、城市安全。视频监控系统是平安城市建设的重要组成部分,视频大数据使平安城市向“智慧型”转变。随着视频大数据的逐渐发展,在治安防控、刑侦办案中出现了更多创新型的应用。首先,办案效率极大提升。当前,我们更多的是通过人工查看的方式在视频中寻找线索,效率低,人力消耗大;而通过视频大数据,我们可以像“百度”等搜索引擎一样快速搜索线索,可基于视频图像中的人员信息、车辆信息、物体信息、行为信息,或者基于以图搜图的方式快速搜索嫌疑目标。所以,在智慧型平安城市的视频监控系统建设中,已经从原先高清系统的“看得清、看得明”向基于大数据的“找得快、找得准”转变。其次,事后取证向事前预防转变。我们当前拥有了大量的视频,但都是用于事后取证,显然无法对犯罪预防起到积极的作用。而基于视频大数据,可以对城市的犯罪做出趋势研判、预测分析,基于这些分析结果,可以有目的的部署警力,这样可以在有限的人力下有效降低城市的犯罪率。
3、可视化管理。视频监控系统发展到今天,可视化管理变得愈发重要。在交通、金融、电力、能源、校园、医疗等等领域,可视化管理都变成了不可或缺的一部分。当然,当前的可视化管理更多地还是靠人工在后台实时监看,效率并不高。基于视频大数据,可以将可视化管理提升一个高度,使前端的那些“眼睛”变得更加智慧,实现自动监看,释放人力。同时,区域内的监控点位可实现智慧联动,提升管理效率。
总之,在智慧城市建设中,视频大数据的数据共享更加广泛、深度应用更加丰富。
四、结语
视频大数据能够为用户构建更加智慧的系统,提供更具价值的服务。在智慧城市中,快速增长的视频图像数据、不断涌现的用户需求,预示着对视频大数据的诉求越来越强烈。在未来的发展中,需要不断解决视频大数据面临的问题并加以完善,包括技术创新、业务创新、体制改善、标准完善。只有更加成熟的视频大数据,才能体现出更多的优势,发挥更大的价值。随着视频大数据的不断发展成熟,它必将给智慧城市发展建设带来质的提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29