京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解读工业大数据的来源、实施项目的关键问题
近年来,随着德国工业4.0和美国工业互联网为代表的新工业革命深入发展,以及“中国制造2025”、“互联网+”行动计划与“促进大数据发展行动纲要”的颁布实施,工业大数据得到了越来越多的关注。这里分享一下我们的思考与实践。
1、工业大数据三大来源
企业信息系统、装备物联网和企业外部互联网是工业大数据的三大来源:
企业信息系统存储了高价值密度的核心业务数据。上世纪60年代以来信息技术加速应用于工业领域,形成了产品生命周期管理(PLM)、企业资源规划(ERP)、供应链管理(SCM)和客户关系管理(CRM)等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、物流供应数据以及客户服务数据,存在于企业或产业链内部,是工业领域传统数据资产。
近年来物联网技术快速发展,装备物联网成为工业大数据新的、增长最快的来源,它实时自动采集了生产设备和交付产品的状态与工况数据。一方面,机床等生产设备物联网数据为智能工厂生产调度、质量控制和绩效管理提供了实时数据基础;另一方面,2012年美国通用电气公司提出的工业大数据(狭义的),专指装备使用过程中由传感器采集的大规模时间序列数据,包括装备状态参数、工况负载和作业环境等信息,可以帮助用户提高装备运行效率,拓展制造服务。
当前互联网与工业深度融合,企业外部互联网已成为工业大数据不可忽视的来源。本世纪初,日本企业就开始利用互联网数据分析获取用户的产品评价,时至今日,小米手机利用社交媒体数据成功实现产品创新研发。此外,外部互联网还存在着海量的“跨界”数据,比如影响装备作业的气象数据、影响产品市场预测的宏观经济数据、影响企业生产成本的环境法规数据……
2、工业大数据实施的关键问题
数据质量、多源关联和系统集成是工业大数据实施的关键问题:
拥有大数据不是目的,发掘其价值才是关键。由企业信息化数据、装备物联网数据和外部互联网数据汇聚而成的工业大数据,蕴藏着巨大价值。例如,通过分析用户使用数据改进产品,通过分析现场测量数据提高工件加工水平,通过工况数据进行产品健康管理等。
笔者认为实施工业大数据项目需要关注以下3个关键问题:
(1)数据质量控制问题
原始数据(生数据)质量决定分析结果的质量。企业信息系统数据质量仍然存在问题,例如2014年某大型机车企业ERP系统中近20%物料存在“一物多码”问题。装备物联网数据质量堪忧,某大型制造企业1个月的状态工况数据中,无效工况(如盾构机传回了工程车工况)、重名工况(同一状态工况使用不同名字)、时标混乱(当前时间错误或时标对不齐)等数据质量问题约30%。
(2)多源数据关联问题
层次化的物料表(Bill Of Material, BOM)定义了企业信息系统数据的核心语义结构。针对跨生命周期的研制BOM和实例BOM间结构失配问题,我们提出了中性BOM模型,并以此为核心,向前关联设计制造BOM,向后关联服务保障BOM,形成星型结构,极大地降低了数据关联的复杂度。同时,针对装备物联网数据和外部互联网数据,可以根据其绑定的物理对象(零部件或产品)与相应的BOM节点相关联。从而以BOM为桥梁,关联3个不同来源的工业大数据。
(3)大数据系统集成问题
工业大数据其来源更加广泛,并且装备物联网数据(半结构化数据)和外部互联网数据(非结构化数据)都要与企业信息系统(结构化数据)进行集成,因此要重构数据支撑平台,甚至替换“旧”系统。
3、工业大数据实施工程案例
工业大数据分析提升工程装备服务保障水平,这里分享两个工程案例:
案例1、工业大数据提供故障分析新手段
液压系统是工程机械的关键部件。2013年我们发现液压系统的油缸密封套腐蚀故障数量异常。于是依据企业信息系统记录的液压系统维修历史数据,通过比对相关状态工况数据(装备物联网数据),搜索推荐与故障车辆关系密切的工况,发现车辆油缸换向频率的波动幅度与这些故障高度相关。
进一步,引入互联网上的行政区划数据和历年工程建设数据(外部互联网数据)后,发现2012~2013年期间这些典型故障均发生在沿海省份,从而推断出盐雾环境是导致密封套腐蚀故障的主要诱因。
案例2、工业大数据提升备件需求预测精度
随着工程装备增量市场增长乏力,以维修保障为主的存量市场成为企业盈利新的增长点。我们利用了企业信息系统中的备件销售订单、采购订单和备件库存状态数据,以及工程物联网采集到的工况数据和外部互联网数据(如每个省的GDP,建筑、交通等规划数据)。
针对30个省市区进行了备件需要预测,平均预测精度为82%,每旬备件需求预测误差在5件或真实值的20%以内。库存水平控制在一个较低的稳定水平,仅为原来库存水平的48%。同时,因为考虑到了20天的配货周期,基于预测的补货策略可以保证现货满足率,消除紧急临时订单。如果按备件库存占有资金1亿元计算,可节约库存资金占用5000万元。
工业大数据是实现智能制造的基础原料,是提升工业生产力、竞争力、创新力的关键要素。然而必须看到,工业大数据是一个正在发展的学科领域,其内涵外延、模型理论、技术方法及其实施策略等还有待发展与创新。唯有结合中国国情认真实践,才能走出中国工业大数据自主之路,实现制造强国的战略目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16