
2017大数据与数据可视化发展趋势
2016年,各行各业的大数据应用都渐渐从空洞的理论落地,被专家们称为“大数据元年”。无论如何,大数据已经成为IT领域的流行趋势,那么,2017年对大多数企业具有战略意义的大数据趋势有哪些?
Infogix首席执行官兼总裁表示,2017年的大数据趋势主要集中在企业如何通过大数据实现更好的商业价值,以及如何通过改善商业智能来帮助企业改变组织流程和客户体验。企业业务主管要求要有更好的数据管理来满足合规性,更快速地采用大数据和创新变革的数据分析技术来引导业务。以下分享2017年大数据领域的十大趋势预测:
1.大数据的扩散
大数据的扩散使得快速分析数据获得有价值的洞察变得至关重要,企业必须将未使用的大数据(也称为黑暗数据)转换为可用的数据。目前大数据还没有产生实质性或决定性的价值和产品,所以企业想要通过新的产品或思想在竞争中获得优势还是大有可为的。
2.使用大数据改善客户体验
使用大数据通过从传统系统转移到供应商系统、并购和核心系统升级来改进客户体验。通过自助服务灵活性分析数据,快速了解领先趋势,同时了解新客户收购增长机会。使用大数据来更好地了解客户,以便通过交叉销售或加售来提高收入,以及通过减少客户流失来消除收入损失的风险。
3.更广泛地采用Hadoop
Hadoop绝对是大数据领域的一匹黑马,现在越来越多的企业采用Hadoop做大数据存储,逆向思维,创新的Hadoop解决方案会不会是未来企业的刚需呢?利用Hadoop企业能够使用高级分析来查找大量数据,通过查找有价值信息的数据从而得出更多有利可图的决策。
4.预测分析
一方面,精确预测未来的行为和事件能够大幅提高盈利能力。另一方面,快速改进欺诈检测能够尽量减少收入风险,提高运营绩效。
5.基于云的数据分析
将数据分析迁移上云,加速了新功能的采用,将数据转变为行动。另外,数据分析迁移上云,降低了维护和操作的成本。
6.趋向于信息学和数据价值的识别
利用信息学来整合复杂数据的收集、分析和可视化,并从数据中获得价值。
7.利用数据虚拟化实现最大的商业智能
网络上曾流传着这样一句话:”大数据技术是三分虚拟化技术、七分分布式管理、十二分大数据“。数据虚拟化解锁了大数据的隐藏内容。图形数据虚拟化允许企业即时检索和操作数据,无论数据是否格式化、放置在何处。
8.物联网、云、大数据和网络安全的融合
数据管理技术的融合包括数据质量,数据准备,数据分析,数据集成等。随着技智能设备在我们生活中占据的重要性越来越大,互联网络和机器学习变得越来越重要,所以保护这些资产免受网络安全的威胁也应该提上日程了。
9.优化数字渠道,实现全渠道体验
在传统渠道和数字渠道之间维持一定的平衡,为每个客户提供统一优质的服务,并能够在客户的首选渠道中第一时间与客户联系,同时不断寻求创新的方法来增强跨渠道的CX,以期获得竞争优势。
10.通过数据自助服务来提升效率
自助服务数据准备工具为企业节约了时间和成本,并且能够访问多种数据源,结构化、半结构化或非结构化的数据。自助服务功能的引入为用户提供了权利,从而减少了企业对于开发团队的依赖,提高了运营效率。
在上述趋势预测中我们可以获取到一个关键信息:利用信息学来整合复杂数据的收集、分析和可视化,并从数据中获得价值。易网数通专注于数据可视化技术与解决方案实施,在多年来的客户服务中也发现了一个需求趋势——数据可视化不仅仅是可见,更要求可控。最新的大数据可视化趋势包括以下三点:
趋势一、多视图整合,探索不同维度的数据关系
通过专业的统计数据分析系统设计方法,理清海量数据指标与维度,按主题、成体系呈现复杂数据背后的联系;将多个视图整合,展示同一数据在不同维度下呈现的数据背后的规律,帮助用户从不同角度分析数据、缩小答案的范围、展示数据的不同影响。具备显示结果的形象化和使用过程的互动性,便于用户及时捕捉其关注的数据信息。
趋势二、所有数据视图交互联动
将数据图片转化为数据查询,每一项数据在不同维度指标下交互联动,展示数据在不同角度的走势、比例、关系,帮助使用者识别趋势,发现数据背后的知识与规律。除了原有的饼状图、柱形图、热图、地理信息图等数据展现方式,还可以通过图像的颜色、亮度、大小、形状、运动趋势等多种方式在一系列图形中对数据进行分析,帮助用户通过交互,挖掘数据之间的关联。并支持数据的上钻下探、多维并行分析,利用数据推动决策。
趋势三、强大的大屏展示功能
支持主从屏联动、多屏联动、自动翻屏等大屏展示功能,可实现高达上万分辨率的超清输出,并且具备优异的显示加速性能,支持触控交互,满足用户的不同展示需求。可以将同一主题下的多种形式的数据综合展现在同一个或分别展示在几个高分辨率界面之内,实现多种数据的同步跟踪、切换;同时提供大屏幕触控屏,作为大屏监控内容的中控台,通过简单的触控操作即可实现大屏展现内容的查询、缩放、切换,全方位展示企业信息化水准。
有洞察力的数据可视化分析工具
有洞察力的数据可视化分析工具可以更好助力企业IT管理、资产管理等,如易网数通企业可视化管理平台所包含的多个通用可视化工具组件,可以方便的为客户提供多种组合服务,更好的展示仿真可视化系统、搭建虚拟数据中心、基于VDC实现集中可视化管理、三维可视化、直觉化交互操作、资产可视化管理、配线可视化管理、动力环境可视化管理、安防可视化管理、IT系统可视化管理、巡检可视化管理、统计报表、展示管理等强大功能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01