京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据扮演物联网关键角色
现今已有不少人察觉,万物联网的时代,其实主角并不是物体本身,真正的价值在于万物背后的大数据。每个企业也都深知大数据对于商业发展的重要性,但是分析什么、如何分析却各有说法,分不出高下,这块大饼人人都想抢食,但抢到了却往往不知该如何下咽。
技术不是问题 服务才是核心
我们高喊物联网的口号已经许久,也深知未来大数据分析将会带来一波新的产业革命,各行各业现今都在大肆谈论大数据分析的无限可能,但为了大数据而搞大数据,却成了许多企业现在面临的问题,眼见对手做什么就跟着做,总是一窝蜂跟上潮流,但能不能在激浪之中站稳却不见得。
技术是死的,应用却是活的,重点是你的大数据分析能提供什么样的服务?你想透过数据数据解决什么样的问题?PTC资深经理汪崇真认为,“大数据分析用一种更客观的方式预测未来,用数据说话是它最迷人也是最困难的地方。”它的价值并非单靠技术来衡量,与其竞争技术的高低,针对客户需求提供适合、方便且易于使用的服务反而更为重要。
假设将产品应用与工厂制造端区分,厂内虽有其专业性存在,进入门坎也不低,但目的多半是为了要求让制造生产的过程更加精准、提升效能,也可以说在活用上比较刻板。但针对产品应用提供相应的服务相对却更难,且以商业领域来说,消费者口味日新月异,要如何运用大数据分析消费者行为模式存在一定难度,须运用得巧妙,而在消费者求新求变的情况下,实时(Real-time)的数据分析也将变得极为重要。
整合是物联网必要关键
物联网的应用千奇百怪,每一个服务背后可能涵盖多项技术,基本如通讯、感测等,这也让企业往往在开发过程中面临复杂化的问题,就算是大数据分析,前提上也需要各方面信息的整合。对此汪崇真也表示,物联网的决胜点其实并非技术高低,而是如何串联整合才是最大的亮点,不只包括关键技术上的“软硬整合”,更涵盖应用领域的“异业整合”。
汪崇真认为,物联网的世界其实说穿了就是一个整合的世界,过去网络时代是应用程序之间的互相沟通,现今则是强调物与物之间的沟通,因此,如何快速传递物与物之间的讯息,扮演中间桥梁的平台就成了一大关键。
获得两大产业分析公司评选为物联网领导厂商的PTC,在物联网技术的整合上,最大的特色是提供了All in one的解决方案。此方式将有利客户在建构产品时避免将过程复杂化。汪崇真进一步解释,PTC之下的ThingWorx物联网技术平台透过策略性并购整合多项物联网技术,用类似于积木堆栈的方式,将各种开发物联网所需的技术一层一层兜起来,与过去技术各自独立相比, PTC借此替开发者省去了不少时间。
工业物联网的另一大挑战
物联网时代来临,工业领域也开始整合各项技术而掀起新一波工业革命。但事实上,大数据分析应用在工业与商业上却有很明显的不同,由于各行各业皆有其不可取代的特色与专业性存在,“差异化”是工业领域较之商业领域最大的不同,也是最困难的地方。
掌握各行业数据分析共通性
如同上述所说,各行各业的专业性对于数据分析来说,需要长时间大量研究与分析产业各种信息,切入市场并不容易,致力于工业自动化发展的泓格科技生产管理处厂长陈裕霖对此表示,掌握大数据分析的共通性是一项重要的关键。当企业在考虑采用工业物联网链接工业大数据分析的时候,最好的方法是找到一个各行业皆适合的应用作为入口。
举例来说,泓格科技提供许多关于能源数据的分析,从中观察发现,不管何种产业几乎都需要对能源进行有效的管理与控制,因为耗能问题关乎成本的节省,也是企业营运的根本,尤其在物联网时代十分重视节能问题,因此,如何提升能源效率俨然成为各行业最基本的大数据分析,也是在物联网时代中一项重要的基础。
分布式架构让数据精准推送
根据统计,到了2020年,将会有超过500亿个装置透过数字方式连接在一起,而其中很大一部分会出现在工业物联网。无数具有感测与监控能力的数据收集器相互连接产生数据信息,通过各种智能分析为工业制造生产提供极具价值的洞察,并提高效率与生产效益,但这过程却会衍生海量的数据数据,对后端数据库的分析容易不堪负荷。
为了避免这样的状况,分布式架构在这过程中扮演了重要角色,也是未来其中一项核心技术。陈裕霖进一步说明,分布式架构让每个节点都具备一个简单的“大脑”,透过订阅机制将采集到的数据数据针对各端需求或云端平台进行精准式的推送,也就是当后端需要数据时才进行传输,这样的方式可避免海量数据当中不必要的“垃圾”全部送到后端造成负荷。在未来工业大数据分析上,此架构将有助于上百亿个传感器数据进行更有效率的处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29