京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据扮演物联网关键角色
现今已有不少人察觉,万物联网的时代,其实主角并不是物体本身,真正的价值在于万物背后的大数据。每个企业也都深知大数据对于商业发展的重要性,但是分析什么、如何分析却各有说法,分不出高下,这块大饼人人都想抢食,但抢到了却往往不知该如何下咽。
技术不是问题 服务才是核心
我们高喊物联网的口号已经许久,也深知未来大数据分析将会带来一波新的产业革命,各行各业现今都在大肆谈论大数据分析的无限可能,但为了大数据而搞大数据,却成了许多企业现在面临的问题,眼见对手做什么就跟着做,总是一窝蜂跟上潮流,但能不能在激浪之中站稳却不见得。
技术是死的,应用却是活的,重点是你的大数据分析能提供什么样的服务?你想透过数据数据解决什么样的问题?PTC资深经理汪崇真认为,“大数据分析用一种更客观的方式预测未来,用数据说话是它最迷人也是最困难的地方。”它的价值并非单靠技术来衡量,与其竞争技术的高低,针对客户需求提供适合、方便且易于使用的服务反而更为重要。
假设将产品应用与工厂制造端区分,厂内虽有其专业性存在,进入门坎也不低,但目的多半是为了要求让制造生产的过程更加精准、提升效能,也可以说在活用上比较刻板。但针对产品应用提供相应的服务相对却更难,且以商业领域来说,消费者口味日新月异,要如何运用大数据分析消费者行为模式存在一定难度,须运用得巧妙,而在消费者求新求变的情况下,实时(Real-time)的数据分析也将变得极为重要。
整合是物联网必要关键
物联网的应用千奇百怪,每一个服务背后可能涵盖多项技术,基本如通讯、感测等,这也让企业往往在开发过程中面临复杂化的问题,就算是大数据分析,前提上也需要各方面信息的整合。对此汪崇真也表示,物联网的决胜点其实并非技术高低,而是如何串联整合才是最大的亮点,不只包括关键技术上的“软硬整合”,更涵盖应用领域的“异业整合”。
汪崇真认为,物联网的世界其实说穿了就是一个整合的世界,过去网络时代是应用程序之间的互相沟通,现今则是强调物与物之间的沟通,因此,如何快速传递物与物之间的讯息,扮演中间桥梁的平台就成了一大关键。
获得两大产业分析公司评选为物联网领导厂商的PTC,在物联网技术的整合上,最大的特色是提供了All in one的解决方案。此方式将有利客户在建构产品时避免将过程复杂化。汪崇真进一步解释,PTC之下的ThingWorx物联网技术平台透过策略性并购整合多项物联网技术,用类似于积木堆栈的方式,将各种开发物联网所需的技术一层一层兜起来,与过去技术各自独立相比, PTC借此替开发者省去了不少时间。
工业物联网的另一大挑战
物联网时代来临,工业领域也开始整合各项技术而掀起新一波工业革命。但事实上,大数据分析应用在工业与商业上却有很明显的不同,由于各行各业皆有其不可取代的特色与专业性存在,“差异化”是工业领域较之商业领域最大的不同,也是最困难的地方。
掌握各行业数据分析共通性
如同上述所说,各行各业的专业性对于数据分析来说,需要长时间大量研究与分析产业各种信息,切入市场并不容易,致力于工业自动化发展的泓格科技生产管理处厂长陈裕霖对此表示,掌握大数据分析的共通性是一项重要的关键。当企业在考虑采用工业物联网链接工业大数据分析的时候,最好的方法是找到一个各行业皆适合的应用作为入口。
举例来说,泓格科技提供许多关于能源数据的分析,从中观察发现,不管何种产业几乎都需要对能源进行有效的管理与控制,因为耗能问题关乎成本的节省,也是企业营运的根本,尤其在物联网时代十分重视节能问题,因此,如何提升能源效率俨然成为各行业最基本的大数据分析,也是在物联网时代中一项重要的基础。
分布式架构让数据精准推送
根据统计,到了2020年,将会有超过500亿个装置透过数字方式连接在一起,而其中很大一部分会出现在工业物联网。无数具有感测与监控能力的数据收集器相互连接产生数据信息,通过各种智能分析为工业制造生产提供极具价值的洞察,并提高效率与生产效益,但这过程却会衍生海量的数据数据,对后端数据库的分析容易不堪负荷。
为了避免这样的状况,分布式架构在这过程中扮演了重要角色,也是未来其中一项核心技术。陈裕霖进一步说明,分布式架构让每个节点都具备一个简单的“大脑”,透过订阅机制将采集到的数据数据针对各端需求或云端平台进行精准式的推送,也就是当后端需要数据时才进行传输,这样的方式可避免海量数据当中不必要的“垃圾”全部送到后端造成负荷。在未来工业大数据分析上,此架构将有助于上百亿个传感器数据进行更有效率的处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11