京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业如何开启大数据决策之路
站在信息化角度来看,成长的企业讲究发展、固化,成数据的企业讲究创新、智能。而如今身处大数据时代,诸多企业也逐渐意识到人力的决策和管理越发跟不上,开始寻求数据利用的有效手段。
以这样一家企业为例,信息化发展了有十余年,从萌芽到成长、由成熟到创新,走过了多数企业正在走的路,也集成了多数企业可效仿的信息化建设和数据化决策管理经验。
信息化发展之路
该企业的业务形态非常全面,囊括原料板块、制剂板块、零售板块以及工程制造贸易板块。信息化建设经历了小型机时代、ERP时代、大数据时代以及未来的智能工业时代,每一步发展都配合着企业管理升级的需求。
在起步阶段,公司对首先要求改变企业管理理念,需要从业务最核心的财务口径起步,向财务数据的及时性、合规性提出要求。让财务核算尽快摆脱手工记账的时代,提高效率,同时落实新会计制度在操作层面的和规划处理。减轻财务人员原来手工记账的复杂劳作,让财务核算更精细化。
随着公司对业务管控要求的提升,公司提出企业管控模式以财务管控为核心的基础上,要求ERP平台可以将业务数据的流转过程和业务风险进行管控。通过内控体系,将业务风险由事后管控,前沿到事中管控和事前管控;通过全面预算体系将商业计划和业务数据在平台上进行对接,每月进行差异分析,及时纠偏,确保商业计划达成。
面对市场竞争和企业快速成长的双重压力,原来矩阵管理模式已经不适合。为了适应事业快速扩张,多组织的灵活考核调整,在保持现有体系的前提下,将矩阵式管理向蜂窝式管理进化,实现快速柔性的组织调整,支撑企业成长和多变化的管理模式,同时集团管控由财务管控范围向全业务范围进行推进,使得集团整体价值持续最大化,建立以资本利润率为核心的财务指标体系,评价经营者的业绩;适度分权,保证子公司的经营动力及灵活性。
至此,财务模块算是优先完成了整改和创新。但数据的延伸是巨大的,发展至今公司在信息化和管理方面仍面临着诸多问题,尤其是数据化方面:
1、企业系统众多,但是数据分析能力差,价值传递不足,领导看不到企业数据价值;
2、移动端数据应用需求强烈,亟需提高企业决策实时性,易用性和智能性;
3、 缺乏统一的数据规划落地能力,集中管控集团数据,实现集团数据一体化管控;
4、大数据时代下如何支持智能制造+精细化管理的课题越发重要。
大数据决策平台建设
面对这些问题,企业急需建立一个大数据分析决策平台,满足跨业务、可视化、可分享互动等要求,包括能够提高整个大数据运行处理能力的平台,来实现整个大数据的整合。
由于该企业整个单体系统的数据相对来说较成熟,包括ERP数据,BPM数据,HR数据,以及单体MES数据,所以在操作环境中,可以把整个研发、采购、生产、销售、人力、财务的主数据都放到一个平台上,建立一个数据仓库和数据挖掘进程,最后达到整个数据的贯通,实现大数据的分析。
大数据决策分析平台
在规划和建设过程中,此平台分为了七个模块用于分析决策。
1、营销/销售模块
销售模块主要是流向管理、终端数据管理以及库存管理。
流向管理这块,由于每个商业公司的流向规则都不统一,所以公司开发了一套数据清洗系统,建立规则库,这样一来大大缩短了流向的处理时间。清洗出来的数据进行目标终端的管理分析,利用帆软的报表系统FineReport搭建了一个数据展示平台(BI),制定一些数据流程,对整个终端数据进行了一个梳理。并且,通过整合市场的运营数据,分析每一个终端的销量情况,设立预警,了解市场的潜力和挖掘空间。
客户等级分析
2、运营模块
在整个BI里,运营最看重的是指标的跟踪、进度的跟踪。在每个生产、销售模块里都有相关指标的跟踪,对于全年,会有一个全年的指标要求。
运营模块涵盖了采购、生产、库存、销售这四大板块的几乎所有数据。目的是扫清数据盲点提高运营效率,监控问题反馈提供数据支持。
生产-销售-库存
3、 工程项目、研发模块
工程项目与研发项目的重点在于研发进度以及研发费用的使用情况。所要做的是工程项目和研发项目整体进度的把握,直观地展示给领导,进展到哪一步?哪一步影响了整个进度?领导通过分析给出一个直观的判断。
4、人力资源模
人力资源考虑的是人员效率和人员成本方面的问题。通过抽取HR系统、ERP系统自己一部分MES系统的数据,制作一个人员成本和效率分析,能够让我们知道比如这个生产车间,生产一线员工的投资回报率是多少。
最终目的是为其他模块提供人员因素的数据支持,通过人与事的展现组合,能够起到有效利用人力资源的目的;另一方面,通过人资本身的数据整合,直观的展现出集团整个年龄结构、学历结构、职能结构和岗位结构,为集团人事组成合理性提供理论支持。
人才分析
5、采购物流模块
采购物流模块的建设有几大突破口:供应商付款周期、采购单趋势、原料库存预警、运输费用。通过建立这四大模块的报表来进行数据渗透. 通过FineReport制作的报表,每张报表都可进行明细的钻取,一张报表就能深度展现数据。
纵观整个集团的大数据运营体系,以数据驱动的方式,明确了整个的战略方向、战略目标。从整个战略开始、运维服务一直到组织架构管控,整个流程制度的管理,每一个BI报表都紧跟人员的绩效,与KPI管理绑定,在BI中建立明晰的考核体系,包括据录入是否及时这些都由人力资源和运营部来考核。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27