京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有了大数据的介入 以后考试可能都没法作弊了
在教育行业当中,数据对于改善教学方法、提升教学质量来说起到了关键作用,对于一所学校来说,其入学率、出勤率、升学率等指标也是普通用户所关心的重要硬指标,办学机构通过大数据分析技术来对教学过程当中所产生的海量数据进行收集、分类、整理、分析等步骤之后,从某种程度上也能够带动整个教育产业高质量办学的一个重要契机。
现在随着大数据在互联网信息技术当中逐渐流行起来,有很多专家表示教育行业很有可能成为大数据技术应用最能“展示才华”的舞台。大数据技术允许中小学和大学分析从学生的学习行为、考试分数到职业规划等所有重要的信息。许多这样的数据已经被诸如美国国家教育统计中心之类的政府机构储存起来用于统计和分析。
1.大数据对教学改革起到什么作用
在教育领域当中,运用大数据技术来对海量数据进行分析,最终目的就是为了改善学生的学习成绩,通过分析大数据,我们就可以发现一些学生的重要信息,并且通过这些分析结果来为学生的成绩提供个性化的服务。现在在国外的很多国家,尤其是美国,大数据分析已经被应用在了公共教育的诸多方面,据了解,联邦教育部每年都会从财政预算中支出约2500万美元用户理解学生在个性化层面的学习情况。
在教育领域应用大数据技术主要可以通过构造学习分析系统,也就是一个数据挖掘、模化和案例运用的联合框架来为教育工作者提供了解学生具体情况的一类架构和途径。
2.大数据教育应用前景如何
教育应用大数据的前景如何
美国的一些企业已经成功地商业化运作教育中的大数据。全球最大的信息技术与业务解决方案公司IBM就与亚拉巴马州的莫白儿县公共学区进行大数据合作。结果显示,大数据对学校的工作具有重要作用。当IBM刚刚开始与这一学区合作时,除了学生成绩不好之外,该县还面临着辍学率已增加到48%的严峻情况。
在美国的教育大数据领域,除了处于领先地位的IBM,还有像“希维塔斯学习”这样的新兴企业。“希维塔斯学习”是一家专门聚焦于运用预测性分析、机器学习从而提高学生成绩的年轻公司。该公司在高等教育领域建立起最大的跨校学习数据库。通过这些海量数据,能够看到学生的分数、出勤率、辍学率和保留率的主要趋势。通过使用100多万名学生的相关记录和700万个课程记录,这家公司的软件能够让用户探测性地知道导致辍学和学习成绩表现不良的警告性信号。
在加拿大,总部位于安大略省沃特卢的教育科技公司“渴望学习”已经面向高等教育领域的学生,推出了基于他们自己过去的学习成绩数据预测并改善其未来学习成绩的大数据服务项目。这个项目声称可以让来自加拿大以及美国的1000多万名高效学胜提供学习管理系统技术,学校可以利用这些产品来监控学生阅读电子化的课程材料、提交电子版的作业、通过在线与同学交流、完成考试与测验,就能让其计算程序持续、系统地分析每个学生的教育数据。
3.大数据避免考试作弊
大数据避免考试作弊了?
在教育行业当中,积极运用大数据技术应用还有一个重要的原因就是能够监测学生是如何进行考试的。大数据要求教育工作者必须超越传统,不能只追求正确的答案,学生是如何朝着正确答案努力的过程也同样重要。在一次考试中,学生个人和整体在每道题上花费了多少时间?最长的是多少?最短的是多少?平均又是多少?哪些此前已经出现过的问题学生答对或答错了?通过监测上述这些信息和数据,从而形成数据档案,能够帮助学校了解学生为了掌握学习内容而进行的学习全过程,有助于帮助他们提供个性化的学习模式。
用这些学生学习的行为档案创造适应性的学习系统能够提高学生的学习效果。利用学生是“如何”学习的这样重要的信息,考试的出题者们就能为学生量身定制出适合学生的个性化问题,并设计出能够促进记忆力的线索。
通过分析大数据,研究者发现从教育的效果上来看,当被问到一系列难度逐渐增加且互相关联的问题时,学生的表现要好于围绕一个共同的知识点而随机挑选出的问题。这样一来,学生的优缺点以及个性所能发挥的关键点,也就能够非常清晰、容易地挖掘出来了。
编辑的话
从教育行业的一些应用我们不难看出,大数据在行业性应用过程当中已经扎根落地了很久,其实不单是教育行业,在金融、医疗、互联网、政府等等很多领域都已经可以看到大数据进行了越来越多的应用,相信随着数据分析技术的不断成熟和快速发展,大数据的未来将会在越来越多的行业细分市场和领域发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22