
在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别可能存在的突变点,对于洞察现象本质、做出科学决策至关重要。尤其是在处理时间序列数据时,我们常常面临这样的问题:数据随时间是呈现稳定态势,还是有着上升或下降的趋势?在某个时间节点,数据是否发生了显著的突变?Mann-Kendall 检验作为一种强大的非参数统计方法,为我们解决这些问题提供了有效的途径。而借助 SPSS 这一功能强大的统计分析软件,MK 检验的操作变得更加便捷高效。
Mann-Kendall 检验是一种非参数统计检验方法,它的独特优势在于不依赖于数据的具体分布形式,这意味着无论数据是服从正态分布,还是呈现出其他复杂的分布形态,Mann-Kendall 检验都能大显身手,适用于各种类型的数据,包括不满足正态分布的数据。该检验主要用于分析时间序列数据的趋势变化以及检测数据序列中的突变点。 在时间序列 x1 ,x2 ,...,xn中,对于任意两个数据点x i和xj(i<j),若xi<xj,则记为 1;若xi>xj,则记为−1;若xi=xj,则记为 0。通过计算这些秩次关系的统计量,构建检验统计量 Z,并与给定的显著性水平(如 0.05)下的临界值进行比较,判断数据是否存在显著趋势。若∣Z∣>Zα/2,则拒绝原假设,认为数据存在显著趋势;若∣Z∣≤Zα/2,则接受原假设,认为数据不存在显著趋势。
在突变点检测方面,通过构建正序列和逆序列的统计量曲线,观察两条曲线的交点,交点对应的时间点即为可能的突变点。这种基于秩次的计算方式,使得 Mann-Kendall 检验对数据中的异常值具有较强的抗性,不会因为个别极端数据的存在而影响整体的分析结果,大大提高了分析的可靠性。
将时间序列数据导入 SPSS 软件中,确保数据包含时间变量和对应的观测变量,且数据排列整齐,无缺失值或异常值干扰(如有缺失值,需提前进行合理处理,如删除缺失行或使用插补法填充)。这一步是后续分析的基础,只有保证数据的完整性和准确性,才能得到可靠的结果。
在 SPSS 菜单栏中依次点击 “分析”-“非参数检验”-“旧对话框”-“趋势”,打开趋势分析对话框。这一系列操作引导我们进入到 Mann-Kendall 检验的设置界面,SPSS 的菜单设计简洁明了,即使是初次使用的用户也能快速上手。
将观测变量选入 “检验变量列表”,将时间变量选入 “分组变量”,并定义分组变量的范围(如时间序列的起始和结束时间)。通过明确指定观测变量和时间变量,SPSS 能够准确地对数据进行分析,确保分析结果与我们的研究目的一致。
在 “检验类型” 中选择 “Kendall 的协同系数”(此选项可用于趋势分析),若要进行突变点检测,还需在后续通过编程或特定插件辅助完成。虽然 SPSS 的常规界面操作在突变点检测功能上存在一定局限性,但借助外部编程或插件,我们仍然能够充分发挥 Mann-Kendall 检验的全部潜力。
点击 “确定” 按钮,SPSS 将自动计算相关统计量并输出分析结果。结果中主要关注的指标是检验统计量 Z 值及其对应的显著性水平 p 值,若 p<0.05,则表明数据存在显著趋势。这一简洁明了的结果输出方式,让我们能够迅速判断数据的趋势特征,为进一步的分析和决策提供依据。
以某地区近 30 年的年降水量数据为例,利用 SPSS 进行 Mann-Kendall 检验。通过上述步骤,我们将年降水量数据导入 SPSS,设置好相关变量和检验选项后运行分析。假设分析结果得到检验统计量 Z 值为 2.3,对应的 p 值为 0.02,由于 p 值小于 0.05,我们可以得出结论:该地区近 30 年的年降水量存在显著的变化趋势。进一步观察数据,若发现正序列和逆序列的统计量曲线在第 15 年出现交点,则可以推测该地区年降水量在第 15 年可能发生了突变。
这一结果对于该地区的水资源管理、农业规划以及防灾减灾等工作具有重要的参考价值。例如,水资源管理部门可以根据降水量的趋势和突变情况,合理调整水资源调配方案,以应对可能出现的水资源短缺或洪涝灾害;农业部门可以据此优化种植结构,选择更适应降水量变化的农作物品种,提高农业生产的稳定性和可持续性。
Mann-Kendall 检验与 SPSS 软件的结合,为我们提供了一个强大的数据趋势与突变分析工具。通过深入理解 Mann-Kendall 检验的原理,熟练掌握在 SPSS 中的操作流程,并将其应用于实际案例分析,我们能够从复杂的数据中提取有价值的信息,为各个领域的决策提供坚实的数据支持。无论是在科学研究、工程实践还是商业分析中,这种方法都有着广泛的应用前景,帮助我们更好地理解数据背后的规律,把握变化的脉搏,做出更明智的决策。
题库入口:https://edu.cda.cn/goods/show/2845?targetId=4486&preview=0
CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30