京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别可能存在的突变点,对于洞察现象本质、做出科学决策至关重要。尤其是在处理时间序列数据时,我们常常面临这样的问题:数据随时间是呈现稳定态势,还是有着上升或下降的趋势?在某个时间节点,数据是否发生了显著的突变?Mann-Kendall 检验作为一种强大的非参数统计方法,为我们解决这些问题提供了有效的途径。而借助 SPSS 这一功能强大的统计分析软件,MK 检验的操作变得更加便捷高效。
Mann-Kendall 检验是一种非参数统计检验方法,它的独特优势在于不依赖于数据的具体分布形式,这意味着无论数据是服从正态分布,还是呈现出其他复杂的分布形态,Mann-Kendall 检验都能大显身手,适用于各种类型的数据,包括不满足正态分布的数据。该检验主要用于分析时间序列数据的趋势变化以及检测数据序列中的突变点。 在时间序列 x1 ,x2 ,...,xn中,对于任意两个数据点x i和xj(i<j),若xi<xj,则记为 1;若xi>xj,则记为−1;若xi=xj,则记为 0。通过计算这些秩次关系的统计量,构建检验统计量 Z,并与给定的显著性水平(如 0.05)下的临界值进行比较,判断数据是否存在显著趋势。若∣Z∣>Zα/2,则拒绝原假设,认为数据存在显著趋势;若∣Z∣≤Zα/2,则接受原假设,认为数据不存在显著趋势。
在突变点检测方面,通过构建正序列和逆序列的统计量曲线,观察两条曲线的交点,交点对应的时间点即为可能的突变点。这种基于秩次的计算方式,使得 Mann-Kendall 检验对数据中的异常值具有较强的抗性,不会因为个别极端数据的存在而影响整体的分析结果,大大提高了分析的可靠性。
将时间序列数据导入 SPSS 软件中,确保数据包含时间变量和对应的观测变量,且数据排列整齐,无缺失值或异常值干扰(如有缺失值,需提前进行合理处理,如删除缺失行或使用插补法填充)。这一步是后续分析的基础,只有保证数据的完整性和准确性,才能得到可靠的结果。
在 SPSS 菜单栏中依次点击 “分析”-“非参数检验”-“旧对话框”-“趋势”,打开趋势分析对话框。这一系列操作引导我们进入到 Mann-Kendall 检验的设置界面,SPSS 的菜单设计简洁明了,即使是初次使用的用户也能快速上手。
将观测变量选入 “检验变量列表”,将时间变量选入 “分组变量”,并定义分组变量的范围(如时间序列的起始和结束时间)。通过明确指定观测变量和时间变量,SPSS 能够准确地对数据进行分析,确保分析结果与我们的研究目的一致。
在 “检验类型” 中选择 “Kendall 的协同系数”(此选项可用于趋势分析),若要进行突变点检测,还需在后续通过编程或特定插件辅助完成。虽然 SPSS 的常规界面操作在突变点检测功能上存在一定局限性,但借助外部编程或插件,我们仍然能够充分发挥 Mann-Kendall 检验的全部潜力。
点击 “确定” 按钮,SPSS 将自动计算相关统计量并输出分析结果。结果中主要关注的指标是检验统计量 Z 值及其对应的显著性水平 p 值,若 p<0.05,则表明数据存在显著趋势。这一简洁明了的结果输出方式,让我们能够迅速判断数据的趋势特征,为进一步的分析和决策提供依据。
以某地区近 30 年的年降水量数据为例,利用 SPSS 进行 Mann-Kendall 检验。通过上述步骤,我们将年降水量数据导入 SPSS,设置好相关变量和检验选项后运行分析。假设分析结果得到检验统计量 Z 值为 2.3,对应的 p 值为 0.02,由于 p 值小于 0.05,我们可以得出结论:该地区近 30 年的年降水量存在显著的变化趋势。进一步观察数据,若发现正序列和逆序列的统计量曲线在第 15 年出现交点,则可以推测该地区年降水量在第 15 年可能发生了突变。
这一结果对于该地区的水资源管理、农业规划以及防灾减灾等工作具有重要的参考价值。例如,水资源管理部门可以根据降水量的趋势和突变情况,合理调整水资源调配方案,以应对可能出现的水资源短缺或洪涝灾害;农业部门可以据此优化种植结构,选择更适应降水量变化的农作物品种,提高农业生产的稳定性和可持续性。
Mann-Kendall 检验与 SPSS 软件的结合,为我们提供了一个强大的数据趋势与突变分析工具。通过深入理解 Mann-Kendall 检验的原理,熟练掌握在 SPSS 中的操作流程,并将其应用于实际案例分析,我们能够从复杂的数据中提取有价值的信息,为各个领域的决策提供坚实的数据支持。无论是在科学研究、工程实践还是商业分析中,这种方法都有着广泛的应用前景,帮助我们更好地理解数据背后的规律,把握变化的脉搏,做出更明智的决策。
题库入口:https://edu.cda.cn/goods/show/2845?targetId=4486&preview=0
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13