京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库和开发工具,为数据科学、机器学习等领域的学习者和从业者提供了极大便利。如果你正准备投身 Python 课程学习,那么正确安装 Anaconda 就是关键的第一步。本文将详细且清晰地为你介绍在 Windows 系统和 MacOS 系统下的 Anaconda 安装教程,让你轻松搞定安装难题,快速开启 Python 学习之旅。
注:分Windows系统下安装和MacOS系统安装
第①步 在清华大学镜像下载Anaconda安装包。
下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D

下载完成之后,双击下图所示的exe安装文件

第②步 点击Next进行下一步安装

第③步 同意协议,选择I Agree

第④步 选择用户,如果是多用户的选择All Users

第⑤步 指定安装路径,点击Next

第⑥步 这里先不用选第一个选项:Add Anaconda3 to the System PATH environment variable,只勾选第二个Register。推荐安装之后手动配置系统变量System PATH environment,避免配置导致后期使用上的问题。

第⑦步 需要静等一会儿!看到Completed即表示安装完成,后面连续点击Next即可

有时候在安装好Anaconda后,在cmd黑色命令窗口使用一些命令时依然会出现类似:
'conda' 不是内部或外部命令,也不是可运行的程序或批处理文件。
这样的情况大部分是因为在安装的时候,没有勾选将Anaconda环境变量路径自动加入到系统的环境变量中或者有的时候勾选了自动添加也没有设置成功
步骤如下:
进入"我的电脑"-右键-属性-高级系统设置-高级-环境变量
第 ① 步 点击环境变量

第 ② 步 点击环境变量的系统变量里面的"Path"

第 ③ 步 在path中加入你电脑系统安装的Anaconda对应的path环境路径
根据自己的安装路径填写以下3个,示意图中是在默认位置安装的,自选安装路径的话,path路径前面部分不一样,后面部分一样,也是以Anaconda3, Anaconda3Librarybin, Anaconda3Scripts 这样结尾的。
添加以下路径到环境变量中去:(以默认的安装路径为例)
C:ProgramDataAnaconda3
C:ProgramDataAnaconda3Scripts
C:ProgramDataAnaconda3Librarybin

第 ④ 步 然后确定,确定,一路按确定,这样环境就配置完成了。
补充 怎么找我的Anaconda环境变量Path路径文件?
方法如下:
① 对"jupyter notebook"的快捷方式右击--属性

② 然后点击**"打开文件所在位置"**,此时弹出的地址就有我们要的文件路径

③ 鼠标上滑,就可以看到我们要的Anaconda的Path路径对应的文件夹了

如果是老版的win系统,创建环境变量
添加文件路径,需要用英文的分号进行分隔
比如:
我选在变量值前面添加环境变量
C:ProgramDataAnaconda3;C:ProgramDataAnaconda3Librarybin;连接原来的存在的变量值
这里我是举了一个例子,需要根据自己的实际安装路径添加哦

第 ① 步:在清华大学镜像下载地址下载安装包:[https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D](https://link.zhihu.com/?target=https%3A//mirrors.tuna.tsinghua.edu.cn/anaconda/archive/%3FC%3DM%26O%3DD =400x)

第 ② 步:打开终端执行命令:bash /Users/fty/Downloads/Anaconda3-2023.09-0-MacOSX-x86_64.sh

第 ③ 步:执行上一步后,就会显示welcome,然后根据它的提示,需要enter的时候就按回车

第 ④ 步:一路回车……直到看到下图提示,输入yes,回车。注意:这里会有一个提示就是安装的路径。

第 ⑤ 步:输入enter

第 ⑥ 步:继续输入yes,回车

第 ⑦ 步:看见**“Thank you for installing Anaconda3!**”表明安装成功啦~~~

输入conda info 测试

掌握了 Anaconda 的安装方法,就为你学习 Python 课程打下了坚实的基础。在后续的 Python 学习过程中,Anaconda 集成的丰富库和工具将助力你更高效地学习和实践,无论是数据分析、机器学习,还是其他 Python 应用领域,都能轻松应对。现在就行动起来,安装好 Anaconda,开启你的 Python 编程精彩之旅吧!

课程学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
数据分析,未来已来,免费的学习机会不容错过,期待在课程中与你一同开启数据洞察新世界
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17