
在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库和开发工具,为数据科学、机器学习等领域的学习者和从业者提供了极大便利。如果你正准备投身 Python 课程学习,那么正确安装 Anaconda 就是关键的第一步。本文将详细且清晰地为你介绍在 Windows 系统和 MacOS 系统下的 Anaconda 安装教程,让你轻松搞定安装难题,快速开启 Python 学习之旅。
注:分Windows系统下安装和MacOS系统安装
第①步 在清华大学镜像下载Anaconda安装包。
下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
下载完成之后,双击下图所示的exe安装文件
第②步 点击Next进行下一步安装
第③步 同意协议,选择I Agree
第④步 选择用户,如果是多用户的选择All Users
第⑤步 指定安装路径,点击Next
第⑥步 这里先不用选第一个选项:Add Anaconda3 to the System PATH environment variable,只勾选第二个Register。推荐安装之后手动配置系统变量System PATH environment,避免配置导致后期使用上的问题。
第⑦步 需要静等一会儿!看到Completed即表示安装完成,后面连续点击Next即可
有时候在安装好Anaconda后,在cmd黑色命令窗口使用一些命令时依然会出现类似:
'conda' 不是内部或外部命令,也不是可运行的程序或批处理文件。
这样的情况大部分是因为在安装的时候,没有勾选将Anaconda环境变量路径自动加入到系统的环境变量中或者有的时候勾选了自动添加也没有设置成功
步骤如下:
进入"我的电脑"-右键-属性-高级系统设置-高级-环境变量
第 ① 步 点击环境变量
第 ② 步 点击环境变量的系统变量里面的"Path"
第 ③ 步 在path中加入你电脑系统安装的Anaconda对应的path环境路径
根据自己的安装路径填写以下3个,示意图中是在默认位置安装的,自选安装路径的话,path路径前面部分不一样,后面部分一样,也是以Anaconda3, Anaconda3Librarybin, Anaconda3Scripts 这样结尾的。
添加以下路径到环境变量中去:(以默认的安装路径为例)
C:ProgramDataAnaconda3
C:ProgramDataAnaconda3Scripts
C:ProgramDataAnaconda3Librarybin
第 ④ 步 然后确定,确定,一路按确定,这样环境就配置完成了。
补充 怎么找我的Anaconda环境变量Path路径文件?
方法如下:
① 对"jupyter notebook"的快捷方式右击--属性
② 然后点击**"打开文件所在位置"**,此时弹出的地址就有我们要的文件路径
③ 鼠标上滑,就可以看到我们要的Anaconda的Path路径对应的文件夹了
如果是老版的win系统,创建环境变量
添加文件路径,需要用英文的分号进行分隔
比如:
我选在变量值前面添加环境变量
C:ProgramDataAnaconda3;C:ProgramDataAnaconda3Librarybin;连接原来的存在的变量值
这里我是举了一个例子,需要根据自己的实际安装路径添加哦
第 ① 步:在清华大学镜像下载地址下载安装包:[https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D](https://link.zhihu.com/?target=https%3A//mirrors.tuna.tsinghua.edu.cn/anaconda/archive/%3FC%3DM%26O%3DD =400x)
第 ② 步:打开终端执行命令:bash /Users/fty/Downloads/Anaconda3-2023.09-0-MacOSX-x86_64.sh
第 ③ 步:执行上一步后,就会显示welcome,然后根据它的提示,需要enter的时候就按回车
第 ④ 步:一路回车……直到看到下图提示,输入yes,回车。注意:这里会有一个提示就是安装的路径。
第 ⑤ 步:输入enter
第 ⑥ 步:继续输入yes,回车
第 ⑦ 步:看见**“Thank you for installing Anaconda3!**”表明安装成功啦~~~
输入conda info 测试
掌握了 Anaconda 的安装方法,就为你学习 Python 课程打下了坚实的基础。在后续的 Python 学习过程中,Anaconda 集成的丰富库和工具将助力你更高效地学习和实践,无论是数据分析、机器学习,还是其他 Python 应用领域,都能轻松应对。现在就行动起来,安装好 Anaconda,开启你的 Python 编程精彩之旅吧!
课程学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
数据分析,未来已来,免费的学习机会不容错过,期待在课程中与你一同开启数据洞察新世界
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26