
持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。
本次分享我将以教培行业为例,围绕三个核心板块展开说明,分别是销售场景的数据洞察、销售战略与战术应用、销售闭环与数字化增长运营。
通过对销售场景中的数据进行深入分析,我们可以挖掘出许多有价值的信息,从而为企业的决策提供有力支持。
根据过往数据,2024年教培行业的市场规模约为2000亿元,这表明该行业规模依然庞大。与此同时,教培行业每年新增约5万家机构,但其存活率并不理想。许多机构在招生初期便暴露出运营不善的问题,导致客户流失,最终难以为继。
一方面,对于用户而言,其可选择的范围非常广泛,既可以是线上教育,也可以是线下教育。因此,其可替代性较强。但另一方面,在考试方面,目前大约50%的学生进入职高,50%进入高中,家长和学生对于教育的刚性需求依然存在。
行业当前痛点分析:
“双减”政策前,部分教育机构会通过切片广告引导用户留下联系方式,这些线索随后被转交给销售顾问进行跟进。然而,如果销售顾问在四个小时内未能与潜在客户进行有效沟通,这些线索就会被浪费。
在教育行业,试听课环节存在一些问题,这些问题可称为“试听泡沫”。家长在试听过程中十分关注孩子是否能积极参与课堂。
例如,在线下试听时,家长会通过玻璃观察孩子是否被试听老师吸引,是否会分心。家长还特别关注试听老师是否与后续上课老师一致,以及老师是否能抓住孩子的注意力。这些因素直接影响家长对机构的评价。试听课内容也直接关系到转化率。
教育机构的收费多为预收款,但实际到账金额需基于消耗课时核算。如果客户退费率高,会导致机构现金流断裂。因此,管理客户预期、不过度承诺至关重要。
从流量线索到试听,再到签约,整个过程如同漏斗。
针对行业痛点,我们提出一个破题公式:成交效能 = 精准度 × 痛点命中率 ÷ 风险成本。精准度越高、痛点命中率越高、客户风险越低,成交效能就越高。
这一公式适用于B端销售、高价决策以及咨询类服务等需要更多说服和议价的场景,但对于标准化快消品等低价高频产品则不适用。
例如,假设精准度为0.8,痛点命中率为0.7,风险成本为0.5,根据公式计算,成交效能为1.12,这表明该策略具有较好的成交效能。
对数据分析漏斗感兴趣的,通过刷题、学习来掌握数据分析模型和方法。
在激烈的市场竞争中,制定合理的销售战略并灵活运用各种战术是企业取得成功的关键。
信任度是成交的基础,一旦丧失,后续转化将极为困难。因此,要重视销售战略与战术应用。
在销售战略与战术方面,动态分级是重要策略之一。根据“二八定律”,应将80%的精力放在20%的重要客户上。通过分层和贴标签,识别客户的优先级。
例如,一位客户频繁访问网站、多次在线咨询并索要学习方案,可被标注为高优先级客户,其决策权可能高达90%。
通过分析客户行为数据,快速识别并跟进此类客户,可在黄金48小时内促成交易。若未能及时跟进,客户可能转向其他机构,导致流失率上升。
实战沙盘演练也是有效手段。通过分析每月客户数据和营收情况,筛选出优先级高的客户,进一步优化转化流程。智能筛选系统可辅助识别有效客户,避免无效沟通。
例如,对于30天以上未跟进的客户数据,可重新分配至公海,由新的顾问跟进,确保客户得到及时服务。
在销售过程中,还需关注退费率和现金流断裂的预警。避免过度承诺,确保客户了解实际情况,以维持机构正常运营。
同时,通过五维客户价值模型评估客户优先级,包括响应速度、支付信号、教育焦虑值、决策链路和历史行为。
响应速度反映客户积极性;支付信号表明客户购买意愿;教育焦虑值越高,客户越渴望快速交易;决策链路需明确关键决策人;历史行为可判断客户再次选择的可能性。
通过这五个维度,可精准识别客户优先级,提高成交率。
在当今数字化时代,构建完整的销售闭环并借助数字化手段实现增长运营,对于企业的可持续发展具有重要意义。
信任度是成交的基础,一旦丧失,后续转化将极为困难。销售闭环构建与数字化增长运营是教培行业的关键环节。要从数据收集到客户转化,再到持续服务与反馈收集,形成完整闭环。
此外,预期管理至关重要。以思维培养课程为例,我们会提前告知客户,前四次课是孩子从陌生到熟悉、从玩耍到专注的适应期。在此期间,若客户不满意,可退费。
透明的预期管理,能有效避免客户因期望过高而产生的不满与投诉,保障校区稳定运营。同时,清晰的服务条款,明确允许与支持的内容,有助于稳定客户关系,进而稳定现金流。
销售闭环与数字化运营的前提是建立在数据洞察和分析策略的基础上,业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。
如果大家想听黄老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3855?targetId=6777&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26