京公网安备 11010802034615号
经营许可证编号:京B2-20210330
持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。
本次分享我将以教培行业为例,围绕三个核心板块展开说明,分别是销售场景的数据洞察、销售战略与战术应用、销售闭环与数字化增长运营。
通过对销售场景中的数据进行深入分析,我们可以挖掘出许多有价值的信息,从而为企业的决策提供有力支持。
根据过往数据,2024年教培行业的市场规模约为2000亿元,这表明该行业规模依然庞大。与此同时,教培行业每年新增约5万家机构,但其存活率并不理想。许多机构在招生初期便暴露出运营不善的问题,导致客户流失,最终难以为继。

一方面,对于用户而言,其可选择的范围非常广泛,既可以是线上教育,也可以是线下教育。因此,其可替代性较强。但另一方面,在考试方面,目前大约50%的学生进入职高,50%进入高中,家长和学生对于教育的刚性需求依然存在。
行业当前痛点分析:
“双减”政策前,部分教育机构会通过切片广告引导用户留下联系方式,这些线索随后被转交给销售顾问进行跟进。然而,如果销售顾问在四个小时内未能与潜在客户进行有效沟通,这些线索就会被浪费。
在教育行业,试听课环节存在一些问题,这些问题可称为“试听泡沫”。家长在试听过程中十分关注孩子是否能积极参与课堂。
例如,在线下试听时,家长会通过玻璃观察孩子是否被试听老师吸引,是否会分心。家长还特别关注试听老师是否与后续上课老师一致,以及老师是否能抓住孩子的注意力。这些因素直接影响家长对机构的评价。试听课内容也直接关系到转化率。
教育机构的收费多为预收款,但实际到账金额需基于消耗课时核算。如果客户退费率高,会导致机构现金流断裂。因此,管理客户预期、不过度承诺至关重要。

从流量线索到试听,再到签约,整个过程如同漏斗。
针对行业痛点,我们提出一个破题公式:成交效能 = 精准度 × 痛点命中率 ÷ 风险成本。精准度越高、痛点命中率越高、客户风险越低,成交效能就越高。
这一公式适用于B端销售、高价决策以及咨询类服务等需要更多说服和议价的场景,但对于标准化快消品等低价高频产品则不适用。
例如,假设精准度为0.8,痛点命中率为0.7,风险成本为0.5,根据公式计算,成交效能为1.12,这表明该策略具有较好的成交效能。
对数据分析漏斗感兴趣的,通过刷题、学习来掌握数据分析模型和方法。
在激烈的市场竞争中,制定合理的销售战略并灵活运用各种战术是企业取得成功的关键。
信任度是成交的基础,一旦丧失,后续转化将极为困难。因此,要重视销售战略与战术应用。
在销售战略与战术方面,动态分级是重要策略之一。根据“二八定律”,应将80%的精力放在20%的重要客户上。通过分层和贴标签,识别客户的优先级。

例如,一位客户频繁访问网站、多次在线咨询并索要学习方案,可被标注为高优先级客户,其决策权可能高达90%。
通过分析客户行为数据,快速识别并跟进此类客户,可在黄金48小时内促成交易。若未能及时跟进,客户可能转向其他机构,导致流失率上升。
实战沙盘演练也是有效手段。通过分析每月客户数据和营收情况,筛选出优先级高的客户,进一步优化转化流程。智能筛选系统可辅助识别有效客户,避免无效沟通。

例如,对于30天以上未跟进的客户数据,可重新分配至公海,由新的顾问跟进,确保客户得到及时服务。
在销售过程中,还需关注退费率和现金流断裂的预警。避免过度承诺,确保客户了解实际情况,以维持机构正常运营。
同时,通过五维客户价值模型评估客户优先级,包括响应速度、支付信号、教育焦虑值、决策链路和历史行为。

响应速度反映客户积极性;支付信号表明客户购买意愿;教育焦虑值越高,客户越渴望快速交易;决策链路需明确关键决策人;历史行为可判断客户再次选择的可能性。
通过这五个维度,可精准识别客户优先级,提高成交率。
在当今数字化时代,构建完整的销售闭环并借助数字化手段实现增长运营,对于企业的可持续发展具有重要意义。
信任度是成交的基础,一旦丧失,后续转化将极为困难。销售闭环构建与数字化增长运营是教培行业的关键环节。要从数据收集到客户转化,再到持续服务与反馈收集,形成完整闭环。

此外,预期管理至关重要。以思维培养课程为例,我们会提前告知客户,前四次课是孩子从陌生到熟悉、从玩耍到专注的适应期。在此期间,若客户不满意,可退费。
透明的预期管理,能有效避免客户因期望过高而产生的不满与投诉,保障校区稳定运营。同时,清晰的服务条款,明确允许与支持的内容,有助于稳定客户关系,进而稳定现金流。
销售闭环与数字化运营的前提是建立在数据洞察和分析策略的基础上,业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。
如果大家想听黄老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3855?targetId=6777&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17