京公网安备 11010802034615号
经营许可证编号:京B2-20210330
ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业实际场景,给大家整理一套详细的应用流程。
AB测试是互联网行业在流量红利消退背景下实现精细化运营的核心工具。并且AB测试进阶为数据分析人员关键技能,以前Excel为主力,SQL为加分项;现在SQL成为基础,AB测试进阶为关键能力。

AB测试借鉴医学双盲实验原理,通过构建实验组/对照组、随机分配同质化用户、保证样本规模三大条件,验证产品改版的实际效果。在增量转存量的竞争格局中,巨型APP占据用户主要时长,新功能上线需通过分流测试精准捕捉用户偏好,避免主观认知偏差。
该方法通过统计验证功能改版对用户满意度、留存率等核心指标的影响,成为企业优化用户体验、提升存量价值的关键科学决策工具,标志着互联网行业从粗放增长转向数据驱动的精耕时代。

基于ABtest的核心原理,AB测试也不是万能的。核心在于是否有条件开展实验搜集数据。
主要是界面、功能、流程优化,可在原基础上分流量验证效果。不确定新设计好不好?让一半用户用老版本,一半用新版,看哪个版本用户更喜欢、转化更高。

通过分流对比算法模型效果。工程师开发了两种算法,同步上线对比:A组用旧算法,B组用新算法,看哪个能让用户刷得更久、点得更多。

搞营销活动时,比如双11促销,不同广告文案哪个吸引人?早中晚哪个时段发短信效果好?针对白领还是学生推广更有效?分人群测试立马见分晓。
变量不可控(如跨APP联动策略,外部干扰因素过多)。样本量不足,比如统计结果易失准,需基础数据支撑。全量投放的场景,如发布会、全局换LOGO等无法分割用户场景。
AB测试的基本流程我们可以总结为以下一张图:

细化下来的流程梳理:



我们以与大家生活相关的打车场景为例,看看出行平台如何运用ABtest来优化业务。



统计检验:使用T检验、Z检验或贝叶斯方法判断显著性。
由于样本个数为29(少于30)个,是小样本,差值服从t分布。满足配对样本T检验的条件**
- H0原假设: 实验组daily requests与控制组不存在差异
- H1备择假设: 实验组daily requests高于控制组
t,p_twotail = stats.ttest_rel(experiment_group.daily_requests, control_group.daily_requests)
print(f'假设检验的t值={t:.3f} p值={p_twotail:.5f}')
假设检验的t值=-1.472 p值=0.15227
- p>0.05,说明在95%显著水平下,t在统计上不显著的,也就是接受原假设。
如果上线一个功能,直接流量开到50%去做测试,那么如果数据效果不好,或者功能意外出现bug,对线上用户将会造成极大的影响。所以,建议一开始从最小样本量开始实验,然后再逐渐扩大用户群体及实验样本量。

举例:如果某一个app,周一到周五对A做了一个实验,周六周日对用户群B做了同一个实验,结果周末的效果明显较差,但是可能本身是由于周期性因素导致的。所以我们在实验时,一定要排除掉季节等因素。

比如,在推荐算法修改的一个实验中,我们还上线了一个优惠券发放策略优化的实验,那么我们需要将用户划分为4个组:A、老算法+老策略,B、老算法+新策略,C、新算法+老策略,D、新算法+新策略,因为只有这样,我们才能同时进行的两个实验的参与改动的元素,做数据上的评估。
《CDA一级教材》在线电子版正式上线CDA网校,10万+在读,适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12