
ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业实际场景,给大家整理一套详细的应用流程。
AB测试是互联网行业在流量红利消退背景下实现精细化运营的核心工具。并且AB测试进阶为数据分析人员关键技能,以前Excel为主力,SQL为加分项;现在SQL成为基础,AB测试进阶为关键能力。
AB测试借鉴医学双盲实验原理,通过构建实验组/对照组、随机分配同质化用户、保证样本规模三大条件,验证产品改版的实际效果。在增量转存量的竞争格局中,巨型APP占据用户主要时长,新功能上线需通过分流测试精准捕捉用户偏好,避免主观认知偏差。
该方法通过统计验证功能改版对用户满意度、留存率等核心指标的影响,成为企业优化用户体验、提升存量价值的关键科学决策工具,标志着互联网行业从粗放增长转向数据驱动的精耕时代。
基于ABtest的核心原理,AB测试也不是万能的。核心在于是否有条件开展实验搜集数据。
主要是界面、功能、流程优化,可在原基础上分流量验证效果。不确定新设计好不好?让一半用户用老版本,一半用新版,看哪个版本用户更喜欢、转化更高。
通过分流对比算法模型效果。工程师开发了两种算法,同步上线对比:A组用旧算法,B组用新算法,看哪个能让用户刷得更久、点得更多。
搞营销活动时,比如双11促销,不同广告文案哪个吸引人?早中晚哪个时段发短信效果好?针对白领还是学生推广更有效?分人群测试立马见分晓。
变量不可控(如跨APP联动策略,外部干扰因素过多)。样本量不足,比如统计结果易失准,需基础数据支撑。全量投放的场景,如发布会、全局换LOGO等无法分割用户场景。
AB测试的基本流程我们可以总结为以下一张图:
细化下来的流程梳理:
我们以与大家生活相关的打车场景为例,看看出行平台如何运用ABtest来优化业务。
统计检验:使用T检验、Z检验或贝叶斯方法判断显著性。
由于样本个数为29(少于30)个,是小样本,差值服从t分布。满足配对样本T检验的条件**
- H0原假设: 实验组daily requests与控制组不存在差异
- H1备择假设: 实验组daily requests高于控制组
t,p_twotail = stats.ttest_rel(experiment_group.daily_requests, control_group.daily_requests)
print(f'假设检验的t值={t:.3f} p值={p_twotail:.5f}')
假设检验的t值=-1.472 p值=0.15227
- p>0.05,说明在95%显著水平下,t在统计上不显著的,也就是接受原假设。
如果上线一个功能,直接流量开到50%去做测试,那么如果数据效果不好,或者功能意外出现bug,对线上用户将会造成极大的影响。所以,建议一开始从最小样本量开始实验,然后再逐渐扩大用户群体及实验样本量。
举例:如果某一个app,周一到周五对A做了一个实验,周六周日对用户群B做了同一个实验,结果周末的效果明显较差,但是可能本身是由于周期性因素导致的。所以我们在实验时,一定要排除掉季节等因素。
比如,在推荐算法修改的一个实验中,我们还上线了一个优惠券发放策略优化的实验,那么我们需要将用户划分为4个组:A、老算法+老策略,B、老算法+新策略,C、新算法+老策略,D、新算法+新策略,因为只有这样,我们才能同时进行的两个实验的参与改动的元素,做数据上的评估。
《CDA一级教材》在线电子版正式上线CDA网校,10万+在读,适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14