
ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业实际场景,给大家整理一套详细的应用流程。
AB测试是互联网行业在流量红利消退背景下实现精细化运营的核心工具。并且AB测试进阶为数据分析人员关键技能,以前Excel为主力,SQL为加分项;现在SQL成为基础,AB测试进阶为关键能力。
AB测试借鉴医学双盲实验原理,通过构建实验组/对照组、随机分配同质化用户、保证样本规模三大条件,验证产品改版的实际效果。在增量转存量的竞争格局中,巨型APP占据用户主要时长,新功能上线需通过分流测试精准捕捉用户偏好,避免主观认知偏差。
该方法通过统计验证功能改版对用户满意度、留存率等核心指标的影响,成为企业优化用户体验、提升存量价值的关键科学决策工具,标志着互联网行业从粗放增长转向数据驱动的精耕时代。
基于ABtest的核心原理,AB测试也不是万能的。核心在于是否有条件开展实验搜集数据。
主要是界面、功能、流程优化,可在原基础上分流量验证效果。不确定新设计好不好?让一半用户用老版本,一半用新版,看哪个版本用户更喜欢、转化更高。
通过分流对比算法模型效果。工程师开发了两种算法,同步上线对比:A组用旧算法,B组用新算法,看哪个能让用户刷得更久、点得更多。
搞营销活动时,比如双11促销,不同广告文案哪个吸引人?早中晚哪个时段发短信效果好?针对白领还是学生推广更有效?分人群测试立马见分晓。
变量不可控(如跨APP联动策略,外部干扰因素过多)。样本量不足,比如统计结果易失准,需基础数据支撑。全量投放的场景,如发布会、全局换LOGO等无法分割用户场景。
AB测试的基本流程我们可以总结为以下一张图:
细化下来的流程梳理:
我们以与大家生活相关的打车场景为例,看看出行平台如何运用ABtest来优化业务。
统计检验:使用T检验、Z检验或贝叶斯方法判断显著性。
由于样本个数为29(少于30)个,是小样本,差值服从t分布。满足配对样本T检验的条件**
- H0原假设: 实验组daily requests与控制组不存在差异
- H1备择假设: 实验组daily requests高于控制组
t,p_twotail = stats.ttest_rel(experiment_group.daily_requests, control_group.daily_requests)
print(f'假设检验的t值={t:.3f} p值={p_twotail:.5f}')
假设检验的t值=-1.472 p值=0.15227
- p>0.05,说明在95%显著水平下,t在统计上不显著的,也就是接受原假设。
如果上线一个功能,直接流量开到50%去做测试,那么如果数据效果不好,或者功能意外出现bug,对线上用户将会造成极大的影响。所以,建议一开始从最小样本量开始实验,然后再逐渐扩大用户群体及实验样本量。
举例:如果某一个app,周一到周五对A做了一个实验,周六周日对用户群B做了同一个实验,结果周末的效果明显较差,但是可能本身是由于周期性因素导致的。所以我们在实验时,一定要排除掉季节等因素。
比如,在推荐算法修改的一个实验中,我们还上线了一个优惠券发放策略优化的实验,那么我们需要将用户划分为4个组:A、老算法+老策略,B、老算法+新策略,C、新算法+老策略,D、新算法+新策略,因为只有这样,我们才能同时进行的两个实验的参与改动的元素,做数据上的评估。
《CDA一级教材》在线电子版正式上线CDA网校,10万+在读,适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25