京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品健康度和用户活跃度的重要工具,如何通过DAU数据分析洞察用户行为,驱动产品增长?
DAU(Daily Active Users,日活跃用户数)是指在某一天内,至少完成一次特定操作(如登录、使用核心功能等)的独立用户数量。它是衡量产品每日用户活跃度的核心指标,能够直观反映产品的吸引力和用户参与度。
DAU的核心特点:
时间范围:统计周期为一天(24小时)。
去重统计:每个用户每天只计一次,避免重复计算。
灵活定义:活跃行为可根据产品特性定义,例如登录、点击、下单等。
分析 DAU能够帮助企业或产品团队了解用户的活跃度和产品的健康状况,为决策提供依据。
DAU不仅是衡量用户活跃度的指标,还能为产品增长和优化提供重要洞察。以下是DAU的典型应用场景:
DAU的增长通常意味着产品吸引力增强,而DAU下降则可能预示着用户流失或产品问题。

结合新增用户数,分析用户增长是否转化为活跃用户,评估拉新策略的效果。

通过DAU变化评估运营活动(如促销、拉新)的效果,优化活动策略。

通过DAU细分分析,发现用户活跃度低的功能或群体,针对性优化产品。
DAU 计算与趋势分析:
根据定义准确计算 DAU,一般来说,DAU 是指在一天内至少进行一次指定操作(如登录应用、访问页面等)的用户数量。
绘制 DAU 随时间变化的折线图,观察其整体趋势,如是否呈现上升、下降或波动状态。

分析趋势变化的原因,结合收集的其他相关数据,判断是产品内部因素(如功能更新、故障)还是外部因素(如竞争对手活动、节假日)导致的 DAU 变化。
用户细分分析:
按照不同的维度对用户进行细分,常见的维度包括新老用户、地域、年龄、性别、用户行为(如购买频率、使用功能模块等)。分别计算各细分群体的 DAU,比较不同群体之间的差异,找出对 DAU 贡献较大的关键群体。

分析一款游戏 APP 的 DAU 时,发现新用户的 DAU 在注册后的前几天较高,而老用户的 DAU 相对稳定,那么就可以针对新用户和老用户制定不同的运营策略。

分析用户从注册到成为活跃用户的转化过程,计算不同阶段的转化率,找出可能存在的转化瓶颈。

研究用户的留存情况,计算每日的留存率,了解用户在不同时间点的留存情况,找出影响用户留存的因素。因为高 DAU 可能部分依赖于新用户的不断加入,但用户的留存对于维持长期的活跃度更为重要。
新增 DAU:
指在当天首次成为活跃用户的数量。它反映了产品吸引新用户的能力,是衡量产品增长潜力的重要指标。一般是新下载、首次登录的用户。
回归 DAU:
指之前一段时间内(通常为设定的观察期)不活跃,但在当天重新活跃的用户数量。该指标可以反映产品召回老用户的能力以及用户对产品的粘性。
某游戏通过推出新的活动,吸引了一批曾经流失的玩家重新回归并活跃起来,回归 DAU 就能体现这部分召回效果。
留存 DAU:
即前一天(或前几天)的活跃用户在当天仍然活跃的数量。留存 DAU 常结合留存率一起分析。
留存率 = 留存 DAU / 前一天(或前几天)的 DAU×100%
留存率越高,说明用户对产品的粘性和忠诚度越高。
活跃用户时长:指所有活跃用户在当天使用产品的总时长。它反映了用户对产品的参与度和粘性。平均活跃用户时长 = 活跃用户总时长 / DAU,该指标可以帮助了解用户在产品上花费的平均时间,进而评估产品的吸引力和用户体验。
人均启动次数:当天 DAU 的总启动次数除以 DAU 的数量。它可以衡量用户对产品的使用频率。人均启动次数越高,说明用户对产品的依赖程度和使用意愿越强。
转化率:
从不同的用户行为阶段来分析转化率,如注册到活跃的转化率、活跃到付费的转化率等。
注册到活跃转化率 = 当天新注册且活跃的用户数 / 当天新注册用户数 ×100%
转化率可以帮助发现用户在使用产品过程中的流失环节,以便针对性地优化产品流程和运营策略。

时间维度:以日、周、月等不同跨度分析,掌握 DAU 季节性、周期性变化,利于提前规划运营,如电商节假日 DAU 高。
地域维度:按地理位置划分,了解产品各地受欢迎程度,制定推广策略,旅游APP可以对低 DAU 地区加强推广。
用户属性维度:依据年龄、性别等属性,了解用户习惯需求,精准营销,购物 APP 针对年轻女性用户推特色活动。
用户行为维度:按浏览、社交等行为分析,掌握用户偏好和功能使用情况,优化产品体验,如短视频应用强化社交功能。
产品版本维度:分析不同版本 DAU,评估版本更新影响,及时改进问题。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05