 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近的文章。

2023世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人员。

随着各行各业的数字化转型,未来数年全球数据总量将继续保持高速增长态势。如此庞大的数据海洋,若没有专业的数据分析师进行挖掘、整理与解读,那它们就只是一堆毫无价值的乱码。而企业为了在激烈的市场竞争中获取优势,必然需要依靠数据分析师从这些数据中提炼出有价值的信息,如消费者的潜在需求、市场的最新趋势、业务流程中的优化点等。因此,只要数据的 “开采” 与利用需求存在,数据分析师就永远有其用武之地。
一些人担忧数据分析师会被技术所取代。但实际上,这恰恰是数据分析师迎来新飞跃的契机。在 2025 年,掌握先进技术的数据分析师将如虎添翼,能够开展更为复杂、深入和精准的分析工作,为企业提供更高层次的价值服务。

数据分析离不开数学和统计学知识。至少要掌握基本的数学运算,如代数、几何等,这些知识有助于理解数据之间的关系。而统计学更是数据分析的核心工具,重点学习概率、均值、中位数、标准差、相关性、回归分析等概念。

例如,通过计算均值和标准差可以了解数据的集中趋势和离散程度,相关性分析能够帮助我们发现变量之间的关联。


Excel 是一款非常基础且实用的数据处理工具。它可以进行简单的数据录入、整理和计算。例如,通过使用函数(如 VLOOKUP、SUMIF 等)来汇总和关联数据,利用数据透视表功能快速分析数据的不同维度。对于小型数据集的分析和初步探索,Excel 是一个很好的选择。
学习资源:微软官方网站有 Excel 的教程,从基础操作到高级功能都有详细的讲解。此外,网上也有很多 Excel 技巧分享的教程,可以帮助你快速提升 Excel 技能。

数据可视化能够将复杂的数据以直观的图表形式展现出来,帮助我们更好地理解数据和发现规律。Tableau 和 PowerBI 是两款流行的可视化工具。Tableau 具有强大的可视化功能和丰富的图表类型,能够快速创建交互式的可视化作品;PowerBI 则与微软的生态系统紧密结合,方便对 Excel 等数据源进行可视化处理。
学习方式:可以下载这些工具的试用版,通过官方提供的示例数据集进行操作练习。同时,它们的官方网站也有教程和案例分享,帮助你掌握如何将数据转换为有吸引力的可视化图表。

一个完整的数据分析流程通常包括问题定义、数据收集、数据清洗、数据分析、结果解释和决策建议。

如果你想分析一家电商店铺的销售情况,首先要明确问题,如 “哪些产品的销售增长最快?” 然后收集店铺的销售数据,清洗掉其中的错误数据和重复数据,接着运用合适的分析方法(如分类汇总、时间序列分析等)进行分析,最后解释分析结果并提出相应的决策建议,如加大销售增长快的产品的库存和推广力度。
除了前面提到的统计学方法,还需要学习数据挖掘方法,如聚类分析、分类分析等。

聚类分析可以将数据对象划分为不同的群组,例如将客户根据消费行为划分为不同的客户群体,以便企业进行精准营销;分类分析则可以根据历史数据预测新数据的类别,比如预测客户是否会购买某个产品。

可以从身边的数据入手,如分析自己的消费记录、运动数据等。或者从网上找一些公开的数据集,如 UCI 机器学习库中的数据集,进行分析。

数据分析入门需要建立知识体系、掌握工具、学习方法和流程,并通过实践不断积累经验。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23