
大数据会扼杀企业
大数据被很多人吹捧成了大企业的救星:有人说它能预言未来,照亮我们的道路,给古老的商业模式带来新的生机。但是在现实世界中,数据是会杀人的。它能杀死项目,杀死金钱,甚至杀死时间。25年前,数据的增长速度大约只有每天100GB,而现在,数据的增长速率差不多已达到50,000GB每秒。随着数据量的海量增长,企业也越来越难以凭借自身的能力进行数据分析,从而加大而不是减小了企业战略决策的难度。
时间是我们最宝贵的资源,而数据偷走了我们大量宝贵的时间。我们的感观早已被各种各样的数据淹没。每天我们都会收到数不清的电子邮件、手机短信和提醒消息,每一条信息都会让人分心,降低我们的工作效率。它们将我们抽离了原本该做的事情,迫使我们将注意力放在也许重要、也许不重要的事情上。同理,企业的业务数据也同样多得令人窒息,牵扯了我们的大量精力,已经成了影响企业高效决策的拦路虎。
不妨想象一下,如果有一天,你只会收到对你来说真正重要的信息,而且这些信息还能在正确的时间、在正确的地点找到你,世界将是什么样子。那么你每天至少能多做多少事情?我们将大量的时间耗费在被动消化这些海量信息上,真正用来主动谋划企业发展的时间少之又少。这样既令人心力交瘁,又削弱了企业效能。
更重要的是,数据会令企业丧失精准度。光靠捕捉更多信息并不会自动使企业产生更多价值。有人可能会想,我们收集的数据越多,就越能从中获得好的见解。这种自欺欺人的心态是很危险的。只有当数据能带来准确而重要的见解时,它才是好的数据。
另外,只有与你息息相关的信息才是有用的信息。好的信息必须具备时效性和真实性。然而不幸的是,当企业想从大数据中提取有用的见解时,却经常会起到反效果。举个真实的例子,美国有一个叫麦克·西伊的人是办公用品超市OfficeMax的常客,他的女儿不幸和男友死于一场车祸。OfficeMax不知怎么得知了这个消息,在发给麦克·西伊的自动促销邮件中竟然出现了这样的抬头:“麦克·西伊(女儿死于车祸)。”这并非大数据有意作孽,而是它的相关性(和适宜性)的问题。一个企业要想只收集其确实需要的数据几乎是不可能的,很多时候你收集到的是那些原本不该看到的东西。对于一家公司来说,你收集到的数据很可能是误导性甚至是毁灭性的。大数据虽然能将很多不相关的点连接起来,呈现一幅完整的图画,但是要确保数据的相关性、及时性和真实性,你首先还要正确理解它的背景。
现在,全球每天的数据总量都能达到250万的三次方字节,要想通过大数据获得全面的见解是很难的。你要么会陷入无力分析的境地(因此无法获得见解),要么就更糟糕,你可能会在有限的甚至是被错误解读的数据基础上获得错误的见解。如果没有正确地理解数据的背景,将不啻于椽木求鱼。一些看似有希望改变游戏规则的见解,在实际中却很有可能导致你从游戏中出局。
数据也会扼制你的灵活性。传统的数据分析方法,是将交易系统中的所有数据存放到一个数据仓库里(也有的叫数据湖或数据池),然后运行几套业务智能系统,叫几个或十几个分析师分析上一周的时间,然后把数据导到Excel里,或者做一个PPT。周而复始,得到的见解始终是滞后的。这种数据处理方法其实是一种浪费。由于要处理的数据很多,你得需要很长的时间才能获得有用的或是有可操作性的见解。你需要找到一种透过能繁杂的数据,得到为你的公司量身定制的信息的方法。
当我开车进城的时候,我想知道路上的交通堵不堵,需要多久才能达到目的地。如果有人给我的建议跟我同事上次开车走这条路时一样准确,那我就会不那么依赖GPS应用了。Waze就是这个领域的一款非常强大的应用,因为它截取了所有司机的一个巨大的时间断面的信息。这种全球数据的集中化使得所有用户都能获得与背景环境相关的见解。大数据也需要采取类似的做法。企业现在应该停止在自己公司的范围内积攒业务数据了,而是应该真正利用云计算的规模经济效益,不仅仅做到基础设施与应用的共享,更重要的是做到数据的共享。
如果你想将大量数据变成有价值的见解,你就应该利用一个集中化的全球性平台,因为这样一个平台可以借助大量内部和外部资源消化海量信息。企业将数据收集、管理和分析工作外包出去,就可以使这种通用平台专心研究数据科学,而你只需要集中精力,将它为你量身打造的见解应用在提高企业核心能力、强化企业竞争优势上。
20年前的一场“无软件”运动将世界从线下带到了云端。而今天,我们也需要掀起一场“数据有罪”运动。现在已经到了从收集数据转向让这些数据切实发挥作用的时候了。这将的话,在别人还在空谈“大数据”或疲于内部业务智能项目的时候,我们就能够解放精力进行创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09