京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 环评如何跟上潮流
环评数据资源必须实现向大数据的转变,加强管理与应用服务的创新,才能更好地服务于环境管理并支撑环境质量改善目标实现。
1、环评大数据建设的总体目标
明确环评大数据建设的总体目标和定位,有助于把握好其建设方向。
环评大数据建设的总体目标是:充分运用大数据、云计算等现代信息技术手段,整合环境、经济、行业等数据资源,重点理清环境质量、控制总量、污染源“三本帐”,开展相关的数据采集加工、模拟分析、整合共享,提升环评管理能力,提高环评文件编制的科学性,增强环评公共服务能力,服务于“十三五”环保工作改善环境质量的核心目标。
2、环评大数据面向的核心业务
环评大数据是对环评业务开展情况的客观映射,理清环评大数据面向的环评工作的核心业务,有利于明确和深入地理解环评大数据的目标与定位,是开展环评大数据建设与应用的重要前提。
目前,环评工作主要围绕环境质量现状和污染物排放总量两大核心要素开展,这两者之间存在着影响/响应关系,这种关系可以通过模型来表达,如图1所示。
其中,污染物排放总量为固定污染源和非固定污染源排放量之和,固定污染源包括老源和新源,非固定污染源包括道路和非道路源(汽车尾气、秸秆焚烧、工地扬尘等)。各类污染源又分为纳入监管和未纳入监管两部分。
因此,环评大数据的建设必须摸清全国范围内各区域、各时段的环境质量现状数据和污染物排放总量数据,并在此基础上,纳入两者之间的相互作用和影响的相关数据。
3、环评大数据的四维数据架构
面向环评工作中的环境质量现状和污染物排放总量两大核心要素及其影响/响应关系,环评大数据将包含环评工作通常涉及的海量数据,对这些数据进行梳理并形成一套清晰合理的分类,对于指导环评大数据的建设具有重要意义。
总体来讲,可以从四个维度对这些数据加以概括和归纳,即环境质量现状、环评业务过程、环评参与对象和数据应用与演化,如图2所示,这四个维度即构成了环评大数据的四维数据架构。
(1)从环境质量现状的维度,环评大数据包括全国范围内的各环境要素的环境质量数据和生态环境数据;
(2)从环评业务过程的维度,环评大数据包括战略环评数据、规划环评数据、项目环评数据、环评监理数据、竣工验收及后评价数据;
(3)从环评参与对象的维度,环评大数据包括四级环保部门数据、环评单位数据、建设单位数据、社会公众数据和其他行业数据;
(4)从数据应用与演化的维度,环评大数据包括业务数据、支撑数据、管理数据、模拟预测的数据、挖掘分析的数据等。
4、环评大数据的核心数据内容
在以上架构下构建的四维环评大数据,包含了环评业务工作中涉及的海量数据,为了更好地将重点数据建设任务聚焦于环评工作的核心业务,也为了更有针对性地、更有效地满足环境管理工作的需求,还需要对环评大数据的内容开展进一步的梳理和凝练,形成其核心数据内容。
从服务“十三五”环保工作改善环境质量的核心目标的角度,环评大数据核心内容应包括环境质量数据、控制总量数据和污染源数据,如图3所示,三者也可合称为“三本帐”。
(1)环境质量帐。不仅包括环境质量现状数据,更重要的是要包括环境质量改善目标数据,换言之,要包括全国范围内的各环境要素和生态环境的质量现状数据和改善目标数据两大部分;
(2)控制总量帐。不同于以往环境质量达标思路下的总量控制数据,而是为实现改善环境质量这一核心目标,落实“水十条”、“气十条”、“土十条”,环境所能容纳和接受的污染源排放总量数据和生态环境承载能力数据,是环境质量改善目标的要求分解和细化后的具体控制指标数据,内容上主要包括战略环评数据和规划环评数据,含生态红线、质量底线、资源开发上线、负面清单数据,即“三线一单”数据;
(3)污染源帐。从范围上讲,包括固定污染源数据和非固定污染源数据两个方面,其中固定污染源数据包括新源和老源。从内容上讲,包括污染源属性基础数据、污染物排放动态数据2个方面。
总体来讲,以上“三本帐”中,固定污染源数据以及战略环评数据和规划环评数据是环评大数据核心数据中的重点内容。
5、环评大数据的数据来源渠道
数据资源建设是环评大数据建设的重要内容,而数据获取是数据资源建设的重要步骤。从数据采集获取的角度,环评大数据建设主要有如下数据来源渠道。
环境质量帐主要包括环境质量现状数据和环境质量改善目标数据两大部分,前者可以通过环境监测网络获取,后者可以通过相关政策法规获得。控制总量帐可以通过战略环评数据和规划环评数据获得。
污染源帐是环评大数据建设数据获取的关键,也是难点,只有获取时间、空间、行业和过程全覆盖的完整污染源数据,尤其是污染物排放数据,才能够为环境影响模拟分析、环境质量预测预警乃至最终改善环境质量等打下坚实的数据基础。污染源帐主要有以下四个方面的获取渠道。
(1)企业环境信息公开。依托企业环境信息公开系统,可以获得企业基本信息、排口及排放数据、污染防治设施建设和运营数据、建设项目环评数据、排污许可数据等。
(2)环境影响评价。依托全国环评审批数据四级联网交换平台和国家环评基础数据库,可以获得国家以及各省市建设项目的评价和审批数据。
(3)固定源排污许可。依托国家排污许可管理信息平台,可以获得排污许可数据和证后监管数据,具体包括排污许可基础数据、排污单位自行申报数据以及监督性监测数据和监管执法数据等。
(4)行业数据分析。针对未纳入监管的非固定源,通过行业数据相关性分析,结合污染源解析技术成果,估算污染物排放量和污染源动态变化情况。这部分数据主要依靠调用生态环境大数据获取。
以上4个渠道获取的数据具有一定的重合和关联性,通过数据的整合归并和交叉验证将能够形成完整的污染源帐。
6、环评大数据可提供的应用服务
从应用服务对象来看,环评大数据未来可以提供3个方面的服务。
(1)面向各级环境行政管理部门,环评大数据可以提供信息与技术支持服务,具体包括环评质量校核、分析统计、预测预警、信息公开、诚信记录等,环评大数据的应用重点可以提高环评决策和环境预警能力,服务环评事前、事中、事后的全方位一体化“智慧”监管。
(2)面向环评机构,环评大数据可以提供在线数据共享、模拟分析等服务,提升环评基础资料收集的可靠性、便捷性,提高环评文件编制的科学性,节省环评经费,缩短环评时间;
(3)面向社会公众,环评大数据可以提供宣传教育与信息公开服务,正确引导环评公众参与,提升环评公众参与水平和程度。
7、结语
环评大数据应用是个系统工程,基础工作多,涉及面宽,持续周期长,既有管理创新,又有技术挑战。
目前,缺乏全面的信息是环境保护统一监管的难题,解决这一问题需必须开展数据共享与集成。
环评大数据的下一步建设,应立足环评大数据核心,重点加强新源、老源数据库建设,夯实模型建设技术基础,抓好典型应用,实现生态环境大数据在环评领域应用现行先试目标,并配合生态环境大数据项目建设,提供环评大数据应用数据基础和应用服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22