京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是如何入侵我们的生活的
我们正在产生大量数据。
点击鼠标,就能支付信用卡账单;在手机上,就能实现转账;还有些应用程序可以让你轻松地炒股,或是投资初创企业等等。
所有这些设备和解决方案创造出了庞大的数据集,它们也被称为大数据。每个个体行为集中起来,能够揭示出消费、借贷和投资的总体情况。
随着数据驱动性能的新成果投入使用,常常带来颠覆性变化,这会影响整个公司,甚至改变业内传统的盈利模式。试举几例:
1、改变零售企业的市场决策
例如,在零售业,大数据和预测分析会创造以消费者为中心的应用,改变了企业预测然后满足客户需求的方式。为了做到这些,零售商会对庞大的数据存储加以利用,从中发掘价值。
企业数据人员利用数据挖掘得出的诸多发现来识别消费者的购买习惯。能够阐明购买决策过程的模式浮出水面,让零售商能够准确预测需求,优化对消费者的价值交付。这种以消费者为中心的数据使用方法,会推动企业的利润大幅增长。
2、改变传统教育数据应用的范式
根据2015年10月研究和市场(Research and Markets)公司发布的报告,在全球大数据产业中,教育大数据占据了8%的市场份额,并将以10%的复合年均增长率快速发展。预计到2020年,教育大数据产业将位居全球大数据产业第八位。
大数据对教育的重要价值,在于可以实现大量教育数据的采集、处理和分析,以改变传统教育数据应用的范式,通过构建教育领域相关模型,探索教育变量之间的相关关系,为教育教学决策提供有效支持,从而实现人才培养个性化、教学评价多样化、教育决策科学化。
在大数据技术快速发展的背景下,国内外已经出现了越来越多的基于数据的教育应用。美国一家教育科技公司“Knewton”,通过数据科学、机器学习技术、知识图谱等,搭建适应性学习引擎,为学生提供“因材施教”的个性化学习体验;普渡大学的课程信号系统,根据学生在学习管理系统中的学习情况以及学生过去的学业表现,运用商业智能分析技术,判断学生可能存在的学业风险,促进学业成功。
3、改善医疗机构的疗效开发更好的药物
在医疗保健业,供应商正在利用去身份化的临床数据,同时捕捉联网医疗设备和监测仪器产生的其他数据流,以及来自于诊断、治疗和监护服务的信息。通过分析,模式被转换成可执行的见解。通过对种类广泛的关联信息进行分析,医疗机构可以改善疗效、开发更好的药物、识别潜在风险和降低成本。
但在医疗保健业,数据分析带来的好处有赖于适时获取准确数据的能力。如想要弄清楚某种药物的已知副作用和使用该药物的患者群的再入院率之间有何关联,就需要护理过程的每一个环节都能获取可靠安全的信息。但是在这些见解的获取过程中阐发的诸多可能性,可能会带来更好的处方方法、更好的医学配方和更低的再入院率。
数据驱动见解的应用范围并不仅限于零售业和医疗保健业。能够提供无缝信息流的全面整合系统,完全有可能为所有行业保驾护航。
大数据应用的三个层面
目前的对大数据的挖掘和使用主要聚集在应用层,根据wuliashine在知乎上的分析,应有层的精准营销主要体现在这几个方面:
对用户行为特征分析
基于大量的事实数据,我们可以年龄、职业、学历、收入等维度分析用户的喜好和习惯,给用户设定“标签”,做到比用户更了解自己。
精准消息推送
依靠数据分析结果的支撑,在对用户行为和特征分析之后,我们对用户群体进行细分,用邮件,短信,客户端推荐,甚至是传统的商店产品的组合罗列、搭配销售来对特定客户推荐特定产品,实现精准定位。
挖掘重点客户
二八理论告诉我们,80%的利润来源于那少部分忠实的老用户,而且开发一个新用户的成本也高得多,所以维系老用户,挖掘重点用户成了重中之重。也是通过对用户行为的分析,我们来判断哪些用户是与企业的产品和服务匹配的,是最有价值的用户。最直接的就是网站的访问,可以判断用户关心的东西是否与企业有关。当然可以借助外部的社会化媒体信息,从千丝万缕的联系总挖掘对应的信息,综合起来,帮助企业筛选重点用户。
结语
随着设备和信息来源的不断增多,一方面碎片化的数据使分析和思考变得更加困难,另一方面大数据为更多的企业提供了非凡的机遇。让这些领域的从业者能够作出更明智的决定,开发出更有效的产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27