
近两年来,P2P行业呈爆发式增长,除了各大主流平台交易量激增,传统企业和银行也陆续入局,共同抢滩P2P市场。行业开始呈现百花齐放,热闹非凡的场面。经过了两年的野蛮生长之后,P2P市场逐渐清晰,拨云见日。
[线上互联网化,线下金融化]
随着市场的分化,专注于不同客群的P2P企业将在业务模式、业务流程、风险控制、市场策略等方面展现出更加明显的差异。专注于线下业务的平台将与民间小额信贷企业结合甚至趋同;线上P2P企业则更加倾向于扁平化的平台化路线,风格愈加短、平、快。 从P2P的市场形态而言,未来的线上市场和线下市场将出现明显的划分:线上将互联网化,以轻为主;线下将更金融化,越来越重。
[行业垂直细分化是大势所趋]
移动互联网时代P2P面临很多机遇和挑战。如何实现P2P平台互联网化是个颇具深意的课题。在前移动互联网时代,以银行为例,贷前通常需要采集新用户百余项个人信息,再基于此进行风险建模;而如今,依托移动互联网,可参考的用户信息大大增多,P2P平台根据用户信息进行画像,再对其进行用户细分,针对不同的行业用户推荐或者量身定制相应的借款服务。以宜人贷推出的一款专门针对程序员的借款服务码上贷为例,其核心思路就是针对程序员群体设计的定制化服务。
P2P行业平台甚多,竞争也渐趋激烈。从这个思路我们可以想像未来会有平台朝着细分领域去做切入,可能会出现精细到某一类人群服务的平台,如专门为女性服务的平台、专门为学生服务的平台等。不难发现P2P企业面临转型,精细化、专业化是必然趋势。
[基于数据和技术做风控创新]
P2P平台以解决借贷双方信息不对称为使命,而借助移动互联网生产更多真实信息的天然属性,如今的P2P平台可通过采集用户移动互联网信息和行为,进一步消解信息的不对称,有效规避信用风险和操作风险,促进平台的健康发展。移动互联网技术可全方位搜集到用户的信息集合,不仅提供用户“是谁”、“从哪儿来”、“到哪儿去”,还能提供用户的“所在”及“所知所感”。手机上记录用户行为的各类移动终端沉淀了大量的用户数据,P2P平台可以通过这些数据进行预测,结合技术手段规避风险。
以宜信宜人贷为例:首先,宜人贷手机客户端通过授权可获取用户信用卡账单信息、电商及社交数据,并进行交叉验证;同时,还可识别用户行为:如用户存在提交内容时多次删改、申请人与使用的手机信息多次不匹配等异常行为,便可锁定可疑人员,进行重点监控。在风控技术创新方面,宜信宜人贷正在做非常前沿的尝试:相对于传统信审方式需要大量人力和时间来做的电话征信和实地考察征信,宜信宜人贷基于各种渠道数据,优化风控模型和审批流程。最近,在宜人贷借款APP上推出了10分钟快速审核的新借款服务“极速模式”。据悉,通过“极速模式”申请借款,用户仅需要授权提供一些简单的信息,填写极少的个人资料,就能非常便捷地使用手机完成申请全过程。
互联网渗透一切颠覆一切,相信对于P2P行业也是如此,各大主流平台和野心勃勃的“搅局者”纷纷拉开线上市场抢滩大战。深耕垂直细分市场,运用移动互联网的优势,借助大数据及技术创新持续提升服务的互联网化,这些技能,P2P平台你get到了没?本文来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08