
启用HDFS文件系统之前,需要对其进行格式化;格式化只需做一次
在192.168.31.130上执行如下命令
cd /opt/linuxsir/hadoop/bin
./hdfs namenode -format
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
cd /opt/linuxsir/hadoop/sbin
./start-all.sh
\如果要停止,请执行如下命令
cd /opt/linuxsir/hadoop/sbin
./stop-all.sh
clear
cd /opt/linuxsir/hadoop/sbin
./start-dfs.sh
./start-yarn.sh
\如果要停止,请执行如下命令,即分开停止HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
./stop-yarn.sh
./stop-dfs.sh
现在,可以在三个节点上,查看进程,验证Hadoop是否成功启动
[root@hd-master bin]# jps
6262 NameNode
28630 Jps
6455 SecondaryNameNode
6618 ResourceManager
[root@hd-master bin]# ssh root@192.168.31.132 jps
3431 NodeManager
20697 Jps
3311 DataNode
[root@hd-master bin]# ssh root@192.168.31.133 jps
3313 DataNode
3431 NodeManager
20295 Jps
到目前为止,启动HDFS和YARN以后,各个节点的进程,如下图所示
层级 | hd-master | hd-slave1 | hd-slave2 |
---|---|---|---|
hdfs层 | NameNode、Secondary、NameNode | DataNode | DataNode |
Yarn层 | ResourceManager | NodeManager | NodeManager |
hardware各个节点 | 192.168.31.131 | 192.168.31.132 | 192.168.31.133 |
在hd-master上运行如下命令,报告HDFS的基本信息
cd /opt/linuxsir/hadoop
./bin/hdfs dfsadmin -report
[root@hd-master bin]# cd /opt/linuxsir/hadoop
[root@hd-master hadoop]# ./bin/hdfs dfsadmin -report
Configured Capacity: 63116517376 (58.78 GB)
Present Capacity: 52430880768 (48.83 GB)
DFS Remaining: 52430462976 (48.83 GB)
DFS Used: 417792 (408 KB)
DFS Used%: 0.00%
Under replicated blocks: 2
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0
-------------------------------------------------
Live datanodes (2):
Name: 192.168.31.133:50010 (hd-slave2)
Hostname: hd-slave2
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5349883904 (4.98 GB)
DFS Remaining: 26208165888 (24.41 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.05%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
Name: 192.168.31.132:50010 (hd-slave1)
Hostname: hd-slave1
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5335752704 (4.97 GB)
DFS Remaining: 26222297088 (24.42 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.09%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
如果Hadoop启动出问题,可以通过查看日志来寻找原因。每次启动Hadoop,应该首先清空三个节点的logs目录,方便寻找错误。
当启动出错,可以到相应节点上,查看日志文件。哪个节点启动出错,就看哪个节点的日志文件。由于有无密码ssh登录,可以通过主节点登录到其它节点,去查看所有节点的日志文件。
日志文件分别在hd-master、hd-slave1、hd-slave2的/opt/linuxsir/hadoop/logs目录下。
启动Hadoop之前,删除log文件
如果启动出问题,log文件里就是最新的出错信息
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
若干web管理界面,列表如下
访问NameNode管理页面,监控文件系统。 http://192.168.31.131:50070/
访问ResourceManager(整个Cluster)管理页面,监控集群状况。 http://192.168.31.131:9099/ 这个端口缺省是8088,由于端口冲突,改成9099, 参考yarn-site.xml
MapReduce JobHistory Server的管理页面,查看MapReduce作业提交历史;需要事先启动JobHistory Server。 http://192.168.31.131:19888/
cd /opt/linuxsir/hadoop/bin
hdfs dfsadmin -safemode leave
\ 用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下:
\ enter - 进入安全模式
\ leave - 强制NameNode离开安全模式
\ get - 返回安全模式是否开启的信息
\ wait - 等待,一直到安全模式结束
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -rm -r /input \ 递归式删除目录
./hdfs dfs -mkdir /input \ 创建目录
./hdfs dfs -chmod a+rwx /input \ 授权
./hdfs dfs -mkdir /output \ 创建目录
./hdfs dfs -copyFromLocal /opt/linuxsir/test.txt /input \ 拷贝文件到HDFS
\ 或者./hdfs dfs -put /opt/linuxsir/test.txt /input
./hdfs dfs -cat /input/test.txt | head \ 显示文件的头几行
注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -cat /input/test.txt
./hadoop jar /opt/linuxsir/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/test.txt /output
./hdfs dfs -ls /output
./hdfs dfs -cat /output/part-r-00000
为了运行wordcount,必须保证hdfs分布式文件系统的/output不存在。如果存在可以把它删除,命令如下
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -ls /output
./hdfs dfs -rm /output/*
./hdfs dfs -rmdir /output
在hd-master节点上,配置History Server
1、在.../etc/hadoop/mapred-site.xml中配置以下内容
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
2、把hd-master的新配置分发到所有节点即hd-slave1和hd-slave2。
clear
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave1:/opt/linuxsir/hadoop/etc/hadoop
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave2:/opt/linuxsir/hadoop/etc/hadoop
3、启动服务,在hd-master这台服务器上执行以下语句。 注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
mr-jobhistory-daemon.sh start historyserver
clear
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
访问MapReduce JobHistory Server
http://192.168.31.131:19888/
为了顺利运行该实例,需要编辑/opt/linuxsir/hadoop/etc/hadoop/hdfs-site.xml配置文件,添加如下配置
<!-- for windows access linux HDFS -->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29