京公网安备 11010802034615号
经营许可证编号:京B2-20210330
cd /opt/linuxsir
tar -zxvf hadoop-2.7.3.tar.gz
ls
mv hadoop-2.7.3 /opt/linuxsir/hadoop
在192.168.31.131虚拟机上编辑/root/.bashrc文件,然后复制到192.168.31.132、192.168.31.133
echo "" >> /root/.bashrc
echo "export HADOOP_PREFIX=/opt/linuxsir/hadoop" >> /root/.bashrc
echo "export HADOOP_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_COMMON_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop" >> /root/.bashrc
echo "export HADOOP_HDFS_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_MAPRED_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export HADOOP_YARN_HOME=$HADOOP_PREFIX" >> /root/.bashrc
echo "export PATH=$PATH:$HADOOP_PREFIX/sbin:$HADOOP_PREFIX/bin" >> /root/.bashrc
echo "export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"" >> /root/.bashrc
echo "export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native" >> /root/.bashrc
echo "export CLASSPATH=$CLASSPATH:/opt/linuxsir/hadoop/lib/*" >> /root/.bashrc
cat /root/.bashrc
\在192.168.31.131上,复制/root/.bashrc到132和133
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
\在192.168.31.131上,在131/132/133三台机器上运行/root/.bashrc,刷新环境
cd
source /root/.bashrc
ssh root@192.168.31.132 source /root/.bashrc
ssh root@192.168.31.133 source /root/.bashrc
cd /opt/linuxsir/hadoop \进入/opt/linuxsir/hadoop目录
rm -rf /opt/linuxsir/hadoop/tmp
rm -rf /opt/linuxsir/hadoop/hdfs
mkdir /opt/linuxsir/hadoop/tmp \创建tmp目录
mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name \创建hdfs的data、name子目录
\还要针对hd-slave1,hd-slave2等两个节点上执行上述命令,然后再初始化hdfs
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.132 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.132 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/hdfs
ssh root@192.168.31.133 mkdir /opt/linuxsir/hadoop/tmp
ssh root@192.168.31.133 mkdir -p /opt/linuxsir/hadoop/hdfs/data /opt/linuxsir/hadoop/hdfs/name
对若干配置文件进行设置,保证Hadoop能够正常启动。
(1) 主要的配置文件包括HADOOP_HOME目录下的
(2) 并且为如下文件配置环境变量
(3)master和slave
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的core-site.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:///opt/linuxsir/hadoop/tmp</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hd-master:9000</value><!-- NameNode URI -->
</property>
<property>
<name>io.file.buffer.size</name>
<value>131702</value>
</property>
</configuration>
编辑/opt/linuxsir/hadoop/etc/hadoop目录下的hdfs-site.xml文件,内容如下
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/name</value> <!-- 本机name目录for NameNode -->
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///opt/linuxsir/hadoop/hdfs/data</value> <!-- 本机data目录for DataNode -->
</property>
<property>
<name>dfs.replication</name> <!-- 数据块副本数量 -->
<value>2</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hd-master:9001</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop目录下,复制mapred-site.xml.template到mapred-site.xml,并且进行编辑
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value> <!--yarn or yarn-tez-->
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
<property>
<name>mapreduce.map.memory.mb</name> <!-- memory for map task -->
<value>64</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name> <!-- memory for reduce task -->
<value>128</value>
</property>
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>32</value>
</property>
<property>
<name>mapreduce.map.java.opts</name> <!-- settings for JVM map task -->
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name> <!-- settings for JVM reduce task -->
<value>-Xms128m -Xmx256m</value>
</property>
</configuration>
在/opt/linuxsir/hadoop/etc/hadoop编辑yarn-site.xml文件,对YARN资源管理器的ResourceManager和NodeManagers节点、端口、内存分配等进行配置
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hd-master</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>hd-master:9032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>hd-master:9030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hd-master:9031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hd-master:9033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hd-master:9099</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xms128m -Xmx256m</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>8</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
进入hadoop-env.sh脚本文件所在目录/opt/linuxsir/hadoop/etc/Hadoop
export JAVA_HOME=/opt/linuxsir/java/jdk
接着,设置/opt/linuxsir/hadoop/etc/hadoop目录下yarn-env.sh脚本文件的JAVA_HOME变量,内容如下
export JAVA_HOME=/opt/linuxsir/java/jdk
如果NodeManager因为内存不足,而启动不起来,那么yarn-env.sh文件需要做如下修改,即JAVA_HEAP_MAX改为3G
JAVA_HEAP_MAX=-Xmx3072m
修改/opt/linuxsir/hadoop/etc/hadoop/masters文件和/opt/linuxsir/hadoop/etc/hadoop/slaves文件,目的是指定主节点和从节点列表。
/opt/linuxsir/hadoop/etc/hadoop/masters文件的内容如下,即主节点为hd-master
hd-master
/opt/linuxsir/hadoop/etc/hadoop/slaves文件的内容如下,即从节点为hd-slave1和hd-slave2
hd-slave1
hd-slave2
从192.168.31.131虚拟机复制Hadoop到其它各个节点,包括192.168.31.132、192.168.31.133。 在192.168.31.131上运行如下命令
chmod a+rwx -R /opt/linuxsir \设置/opt/linuxsir的存取权限
ssh root@192.168.31.132 chmod a+rwx -R /opt/linuxsir
ssh root@192.168.31.133 chmod a+rwx -R /opt/linuxsir
scp -r /root/.bashrc root@192.168.31.132:/root/.bashrc \复制/root/.bashrc
scp -r /root/.bashrc root@192.168.31.133:/root/.bashrc
scp -r /opt/linuxsir/hadoop hd-slave1:/opt/linuxsir \复制/opt/linuxsir/hadoop
scp -r /opt/linuxsir/hadoop hd-slave2:/opt/linuxsir
source ~/.bashrc \刷新环境变量
ssh root@192.168.31.132 source ~/.bashrc
ssh root@192.168.31.133 source ~/.bashrc
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09