京公网安备 11010802034615号
经营许可证编号:京B2-20210330
例6.1 不同装配方式对生产的过滤系统数量的差异性检验
某城市过滤水系统生产公司,有A、B、C3种方式进行过滤水系统的装配,该公司为了研究三种装配方式生产的过滤系统数量是否有差异,从全体装配工人中抽取了15名工人,然后随机地指派一种装配方式,这样每个装配方式就有5个工人。在指派装配方法和培训工作都完成后,一周内对每名工人的装配过滤系统数量进行统计如下:
| 方法A | 方法B | 方法C |
|---|---|---|
| 58 | 58 | 48 |
| 64 | 69 | 57 |
| 55 | 71 | 59 |
| 66 | 64 | 47 |
| 67 | 68 | 49 |
请根据数据判断3种装配方式有无差异
分析过程:由于目标是判断3种装配方式有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:均值不全相等
import pandas as pd
import numpy as np
from scipy import stats
# 数据
A = [58,64,55,66,67]
B = [58,69,71,64,68]
C = [48,57,59,47,49]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
F_value: 9.176470588235295
p_value: 0.0038184120755124806
结论 选择显著性水平 0.05 的话,p = 0.0038 < 0.05,故拒绝原假设。支持三种装配方式装配数量均值不全相等的备则假设。
例6.2 不同优惠金额对购买转化率的差异性检验
某公司营销中心为了提升销量,针对某产品设计了3种不同金额的优惠,想测试三种优惠方式对于用户的购买转化率是否有显著影响,先收集到了三种不同方式在6个月内的转化率数据
请根据数据判断3种不同优惠金额的转化率有无差异
| 优惠A | 优惠B | 优惠C |
|---|---|---|
| 0.043 | 0.05 | 0.048 |
| 0.047 | 0.048 | 0.05 |
| 0.051 | 0.045 | 0.047 |
| 0.049 | 0.055 | 0.056 |
| 0.045 | 0.048 | 0.054 |
| 0.0469 | 0.0491 | 0.0509 |
分析过程:由于目标是判断3种不同金额的优惠券对于转化率有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:认为这几组之间的购买率不一样
P < 0.05 拒绝原假设,倾向于支持不同优惠金额购买率不一样的备择假设。认为不同优惠金额会对购买率产生影响 P > 0.05 无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
import pandas as pd
import numpy as np
from scipy import stats
A = [0.043 , 0.047 , 0.051 , 0.049 , 0.045 , 0.0469]
B = [0.05 , 0.048 , 0.045 , 0.055 , 0.048 , 0.0491]
C = [0.048 , 0.05 , 0.047 , 0.056 , 0.054 , 0.0509]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
# F_value: 2.332956563862427
# p_value: 0.13116820340181937
结论 选择显著性水平 0.05 的话,p = 0.1311 > 0.05,故无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
这里的等重复实验,意思就是针对每个组合做大于等于两次的实验,比如下方例子中表里A1和B1的组合里面有2个数字,即说明做了两次实验,如果是3个数字则说明3次实验,依次类推。
例6.3 不同燃料种类和推进器的火箭射程差异性检验
火箭的射程与燃料的种类和推进器的型号有关,现对四种不同的燃料与三种不同型号的推进器进行试验,每种组合各发射火箭两次,测得火箭的射程如表(以海里计)(设显著性水平为0.05)
| 燃料 | B1 | B2 | B3 |
|---|---|---|---|
| A1 | 58.2 , 52.6 | 56.2 , 41.2 | 65.3 , 60.8 |
| A2 | 49.1 , 42.8 | 54.1 , 50.5 | 51.6 , 48.4 |
| A3 | 60.1 , 58.3 | 70.9 , 73.2 | 39.2 , 40.7 |
| A4 | 75.8 , 71.5 | 58.2 , 51.0 | 48.7 , 41.0 |
import numpy as np
import pandas as pd
d = np.array([[58.2, 52.6, 56.2, 41.2, 65.3, 60.8],
[49.1, 42.8, 54.1, 50.5, 51.6, 48.4],
[60.1, 58.3, 70.9, 73.2, 39.2, 40.7],
[75.8, 71.5, 58.2, 51.0, 48.7,41.4]
])
data = pd.DataFrame(d)
data.index=pd.Index(['A1','A2','A3','A4'],name='燃料')
data.columns=pd.Index(['B1','B1','B2','B2','B3','B3'],name='推进器')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['燃料'])
data = data.rename(columns={'value':'射程'})
data.sample(5)
| 燃料 | 推进器 | 射程 |
|---|---|---|
| A2 | B3 | 48.4 |
| A3 | B2 | 73.2 |
| A3 | B3 | 39.2 |
| A4 | B1 | 71.5 |
| A2 | B2 | 54.1 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('射程~C(燃料) + C(推进器)+C(燃料):C(推进器)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
| sum_sq | df | F | PR(>F) | |
|---|---|---|---|---|
| C(燃料) | 261.675 | 3 | 4.41739 | 0.025969 |
| C(推进器) | 370.981 | 2 | 9.3939 | 0.00350603 |
| C(燃料):C(推进器) | 1768.69 | 6 | 14.9288 | 6.15115e-05 |
| Residual | 236.95 | 12 | nan | nan |
结论:
对燃料因素来说,其p = 0.0259 < 0.05 所以拒绝,认为燃料对射程影响显著;
对推进器因素来说,其p = 0.0035 < 0.05,所以拒绝,认为推进器对射程影响显著;
对燃料和推进器的交互因素来说,其p = 0.000062< 0.05,所以拒绝,认为交互因素其对射程影响显著。
在等重复实验中,我们为了检验实验中两个因素的交互作用,针对每对组合至少要做2次以上实验,才能够将交互作用与误差分离开来,在处理实际问题时候,如果我们一直不存在交互作用,或者交互作用对实验指标影响极小,则可以不考虑交互作用,此时每对组合只做一次实验,类似下方例子中的表中数据:
例6.4 不同时间、不同地点颗粒状物含量差异性检验 无重复实验
下面给出了在5个不同地点、不同时间空气中的颗粒状物(单位:mg/m°)含 量的数据记录于表中,试在显著性水平下检验不同时间、不同地点颗粒状物含量有无显著差异?(假设两者没有交互作用〉
| 因素B -地点 | ||||||
|---|---|---|---|---|---|---|
| 因素A - 时间 | ||||||
| 1995年10月 | 76 | 67 | 81 | 56 | 51 | |
| 1996年01月 | 82 | 69 | 96 | 59 | 70 | |
| 1996年05月 | 68 | 59 | 67 | 54 | 42 | |
| 1996年08月 | 63 | 56 | 64 | 58 | 37 | |
import numpy as np
import pandas as pd
d = np.array([
[76,67,81,56,51],
[82,69,96,59,70],
[68,59,67,54,42],
[63,56,64,58,37]])
data = pd.DataFrame(d)
data.index=pd.Index(['1995年10月','1996年01月','1996年05月','1996年08月'],name='时间')
data.columns=pd.Index(['B1','B2','B3','B4','B5'],name='地点')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['时间'])
data = data.rename(columns={'value':'颗粒状物含量'})
data.sample(5)
随机查看5条转化后的数据:
| 时间 | 地点 | 颗粒状物含量 |
|---|---|---|
| 1996年05月 | B4 | 54 |
| 1995年10月 | B4 | 56 |
| 1996年05月 | B3 | 67 |
| 1996年01月 | B2 | 69 |
| 1996年01月 | B3 | 96 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('颗粒状物含量~C(时间) + C(地点)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
| sum_sq | df | F | PR(>F) | |
|---|---|---|---|---|
| C(时间) | 1182.95 | 3 | 10.7224 | 0.00103293 |
| C(地点) | 1947.5 | 4 | 13.2393 | 0.000234184 |
| Residual | 441.3 | 12 | nan | nan |
结论:
对时间因素来说,其p = 0.001033 < 0.05 所以拒绝,认为时间对颗粒状物含量影响显著;
对地点因素来说,其p = 0.000234 < 0.05,所以拒绝,认为地点对颗粒状物含量影响显著;

下期将为大家带来《统计学极简入门》之相关分析
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27