京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社会心理学是以科学的方法研究人们的思想、情感和行为如何受到他人影响的一门学科,它以社会现象为研究导向,旨在探寻个体和群体社会心理现象的发生、发展及其规律,深刻了解社会群体行为背后的动机与目的。自20世纪40年代信息科技革命以来,社会心理学在研究方法上经历了多次变革。第一次变革发轫于20世纪70年代前后,从那时起,心理学家开始运用计算机实施具体的心理实验。第二次变革发生于网络技术突飞猛进的20世纪90年代,其代表性事件是基于网络的心理学问卷诞生、虚拟的网络心理学实验室成立、关于网络的心理学实验研究成果在《科学》上发表。大数据时代的到来则使社会心理学迎来了第三次变革,以瞬时生产并存贮的海量网络数据为支撑的大数据样本,正逐渐成为研究者观察和预测人类个体和群体心理行为特征与规律的宝贵资源。可以预见,大数据将为社会心理学的发展带来变革与挑战。
大数据给社会心理学带来研究方法上的变革。以往的社会心理学通常基于问卷、数据统计、抽样调查和实验室研究分析心理数据,而在大数据时代,真实、准确、及时的大数据样本将为社会心理学研究方法的变革带来崭新机遇。随着研究的日益深入,也许我们能够发现,以往所从事的研究可能只是冰山一角,其潜在的内容需要通过大数据逐一揭示。借助大数据,社会心理学能够在很大程度上摆脱对实体实验室的依赖,最大限度、最为高效地扩充潜在的研究对象,使社会心理学的研究不再只局限于实验室小样本或问卷调查采集的随机样本,从而面向尽可能全面的数据、趋近于总体的样本,这就使社会心理学的研究基础发生了翻天覆地的变化。与此同时,大数据还能够为社会心理学的研究提供更为多样化、异质化的样本,并使研究者摆脱时间、空间的限制,尽可能避免社会期许效应,最大程度规避研究对象在测试过程中受到的各种复杂、无关干扰。在我国,已有不少学者投身大数据的洪流,利用新的研究方法开展社会心理学研究。例如,清华大学彭凯平教授建立了“行为与大数据研究实验室”、中国科学院心理学研究所蔡华俭教授创建了“云端心理实验室”、朱廷劭教授基于大数据开发了“国人心理地图”,这些有价值的尝试都将带动中国社会心理学朝向大数据时代迈进。
大数据拓宽和加深了社会心理学研究的广度和深度。大数据时代,一切事物都被数据化:情绪变成了数据、思维变成了数据、行为模式变成了数据、认知变成了数据、沟通变成了数据、关系变成了数据……受此影响,社会心理学的研究视角和研究领域不断更新和扩展,很多传统的社会心理学问题,如社会心态、个体行为偏好、集群行为、社会态度与公众情绪、动态人际互动与人际关系、社会认知、主观幸福感等,都可能借助大数据得到更为准确的、可视化的测量和呈现。例如,大数据网络实验室可以通过记录用户的网络使用情况提取用户的网络行为特征,分析用户的心理属性和网络行为的关联模式;大数据心理健康系统可以为犯罪矫正人员、精神病患者、特殊心理儿童等建立心理健康档案;借助大数据检测和评估社会心态,能够获取大众的社会心理态势,及时发现社会不稳定因素和风险,为社会治理提供科学、客观的研究报告和应对方案等。
大数据宣告社会心理学预测时代的到来。社会心理学有四项基本功能,即描述、阐释、预测和控制,传统社会心理学多关注描述和阐释两项功能,对于预测和控制则显得有些捉襟见肘。大数据时代,这种状况将获得很大改观。由于大数据时代的社会心理学研究不再过多依赖随机采样,而是通过处理和分析相关数据获取结论,这有助于预测能力的提升。例如,有关心理健康的预测,可以利用被试的网络痕迹代替通过问卷收集的答案,并且用机器学习的方法建立基于网络行为的心理健康预测模型,通过模型计算得出被试的心理健康状态评分;关于幸福感的预测可以对社会公众进行幸福感知的预测;关于社会心态、社会风险判断、群体情绪和集群行为、经济发展信心和政府信任的预测,可以预知和评估国民的社会态度,并根据某类群体社会态度的时间性变化研判社会舆情、引导社会舆论等。2010年美国印第安纳大学的约翰博伦教授发现,Twitter网站上的平静类情绪能显著预测未来2至6天美国道琼斯工业平均指数的结果。我国南开大学乐国安教授团队基于微博与股票的大数据研究发现,微博网民情绪的起伏不仅与中国社会发生的重要事件存在明显对应关系,还在一定程度上能够预测我国证券综合指数及其每天交易量的变化。这表明,大数据的背后是人的心理表现,大数据带来的巨大变革必将使社会心理学在预测与控制方面大展身手。
大数据可能给社会心理学研究带来的风险。随着计算科学、数据挖掘等信息分析技术的迅速发展,高效处理和分析海量数据正在成为可能,在此背景下,社会心理学研究者在研究过程中利用大数据、树立大数据思维显得极为重要。但也要认识到,大数据也有可能会给社会心理学研究带来风险。风险之一在于网络用户隐私权和安全感风险。以Facebook为例,其瞬时可以生成详尽的用户心理数据,如包括种族、性格、智商、幸福感、政治观点、宗教信仰等在内的人口特征资料,一旦掌握了这些数据,便可以自动建立起模型。这提示我们,网络数据的使用应注意透明度是否合理,以及合理界定网络控制权的外延和边界。风险之二是研究方法问题。社会心理学面向的是个人、群体和社会,但大数据所带来的研究方法的改变却使得社会心理学研究者可能更多地关注数据,这或许会使某些研究者误入“数据万能论”的误区。事实上,大数据背后所分析的是每个鲜活的个体,是每个个体的心理与行为,他们是庞大数据神经元的突触。大数据的研究方法并不能完全取代以往的研究方法,大数据的网络实验室也不能完全取代实体实验室,只有关注“人”,只有坚持研究方法上的兼容并包,社会心理学才能在大数据时代获得长足发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28