
Data Scientist需要深刻理解需求和问题所在,然后对数据进行处理,采取合理的量化分析寻求答案,所推荐的答案,也必须是backed by data evidence。Warald认为,以下三类技能是很重要的:
《一》Data Hacking
要有独立从各种各样的地方把数据化为己用的能力。可能会用到的:
SQL:用来存储和查询structured数据
Programming:比如用Python for parsing/scraping data。如果既会一门scripting language,又会一门compiled/object oriented language,会是优势。主要是用来处理unstructured数据
Hadoop/parallel processing:你处理的数据可能太大(比如超市过去半年的购物记录、信用卡公司两年内的刷卡记录)无法一次性装入内存,而你需要对数据进行快速的分析,这就需要MapReduce等技术。
这其中,SQL和Programming是最基本的,你必须会用sql查询数据、会快速写程序分析数据。当然,你的编程技术也不需要达到软件工程师的水平,因为你写的code大多数只是一次性的、不会被复用,而且也只会被你或者个同事使用,并非放在网上让无数人点击,因此对程序质量要求不高。
要想更深入的分析问题,你可能还会用到:
Exploratory analysis skills,可以使用python、R、matlab等各种工具,IT公司用SAS和SPSS相对较少,尽管有些job ads/descriptions里提到了,当然也不是完全不可以。但是如果你只会SAS,那么选择无疑要少很多。
Optimization、Simulation:有些职位需要研究顾客需求变化,调整产品或者服务价格,来帮助公司最大化盈利
Machine Learning、Data Mining:比如有人用数据挖掘技术,发现很多人在超市里买尿布的同时,也买了啤酒 – 现在还没理解为啥,但是也许尿布和啤酒应该放一起卖;另外比如手机广告的精准投放。
Modeling:你需要理解不同的统计模型有什么应用范围、有什么限制和特长,我在第一部分里提到的descriptive、predictive、prescriptive三个场景也是浅显的例子
《二》Problem Solving:
你不光要理解what users say they want,你还需要真正的理解what they actually mean、转化定义出一个可以用数据解决的问题,然后选择正确的分析工具,量化分析和解决问题。
《三》Communication
数据科学家会跟公司的很多不同部门的人打交道,会比码农跟更有机会见到高层或者是 business领域的人。如果你希望接触像市场营销这样的部门,希望跟上级领导多多打交道,那你需要有较强的交流能力。你需要知道区分什么是问题本质、什么是技术细节,要有能力给上层领导讲high level的分析和推荐,有能力给同事讲解和defend你的技术细节,也就是”见什么人说什么话”,这不是说要你油滑,而是说要知道什么时候需要隐藏技术细节,而只展现跟听众最相关的信息。
你很可能要经常做presentation,需要很强的visualization的能力,熟悉Edward Tufte和Nathan Yau的东西,会很有帮助。另外,也许你很喜欢高深的方法,觉得你懂你NB,但是一切的解决方案,都要从产生business revenue的角度来考虑.
你也可能需要跟software development team合作,需要讲清楚需要他们实现什么、需要告诉他们什么地方需要改进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01